精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四棱锥的底面为矩形,已知 ,过底面对角线作与平行的平面交.

(1)试判定点的位置,并加以证明;

(2)求二面角的余弦值.

【答案】(1) 的中点,见解析(2)

【解析】试题分析:(1)平面得到,结合的中点,即可得到答案;

(2)求出平面EAC的法向量和平面DAC的法向量,由此利用向量法能求出二面角的平面角的余弦值.

试题解析:

(1)的中点,证明如下:

连接,因为平面,平面平面 平面,所以,又的中点,所以的中点.

(2)连接,因为四边形为矩形,所以.因为,所以.同理,得,所以平面,以为原点, 轴,过平行于的直线为轴,过平行于的直线为轴建立空间直角坐标系(如图所示).

易知

.

显然, 是平面的一个法向量.设是平面的一个法向量,

,即,取

所以

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线y2x有一个相同的焦点,且该椭圆的离心率为.

(1)求椭圆的标准方程;

(2)过点P(0,1)的直线与该椭圆交于AB两点,O为坐标原点,若,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线axby=1与圆x2y2=1相交于AB两点(其中ab是实数),且AOB是直角三角形(O是坐标原点),则点P(ab)与点(0,1)之间距离的最小值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为边长是2的方形, 分别是 的中点, ,且二面角的大小为.

(1)求证:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加某次知识竞赛测试的学生中随机抽出60名学生,将其成绩(百分制)(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

1)求分数在内的频率,并补全这个频率分布直方图;

2)根据频率分布直方图,从图中估计总体的众数是多少分?中位数是多少分?

3)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.

(1)当m=-1时,求AB

(2)若AB,求实数m的取值范围;

(3)若AB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为).

(1)求选取的市民年龄在内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.

1)根据数据绘制的散点图能够看出可用线性回归模型拟合的关系请用相关系数加以说明;(系数精确到0.001

2)建立关于的回归方程(系数精确到0.01);如果该公司计划在9月份实现产品销量超6万件,预测至少需投入促销费用多少万元(结果精确到0.01.

参考数据 其中 分别为第个月的促销费用和产品销量 .

参考公式:(1)样本的相关系数

2)对于一组数据 其回归方程的斜率和截距的最小二乘估计分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)R上的奇函数且当x>0f(x)=-x2+2x+2.

(1)f(x)的解析式

(2)画出f(x)的图像并指出f(x)的单调区间

查看答案和解析>>

同步练习册答案