【题目】如图所示,四棱锥的底面为矩形,已知, ,过底面对角线作与平行的平面交于.
(1)试判定点的位置,并加以证明;
(2)求二面角的余弦值.
【答案】(1) 为的中点,见解析(2)
【解析】试题分析:(1)由平面得到,结合为的中点,即可得到答案;
(2)求出平面EAC的法向量和平面DAC的法向量,由此利用向量法能求出二面角的平面角的余弦值.
试题解析:
(1)为的中点,证明如下:
连接,因为平面,平面平面, 平面,所以,又为的中点,所以为的中点.
(2)连接,因为四边形为矩形,所以.因为,所以.同理,得,所以平面,以为原点, 为轴,过平行于的直线为轴,过平行于的直线为轴建立空间直角坐标系(如图所示).
易知, , , , , ,
则, .
显然, 是平面的一个法向量.设是平面的一个法向量,
则,即,取,
则,
所以 ,
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆与抛物线y2=x有一个相同的焦点,且该椭圆的离心率为.
(1)求椭圆的标准方程;
(2)过点P(0,1)的直线与该椭圆交于A,B两点,O为坐标原点,若,求△AOB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最小值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加某次知识竞赛测试的学生中随机抽出60名学生,将其成绩(百分制)(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在内的频率,并补全这个频率分布直方图;
(2)根据频率分布直方图,从图中估计总体的众数是多少分?中位数是多少分?
(3)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B;
(2)若AB,求实数m的取值范围;
(3)若A∩B=,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为,,,,,).
(1)求选取的市民年龄在内的人数;
(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合与的关系,请用相关系数加以说明;(系数精确到0.001)
(2)建立关于的回归方程(系数精确到0.01);如果该公司计划在9月份实现产品销量超6万件,预测至少需投入促销费用多少万元(结果精确到0.01).
参考数据: , , , , ,其中, 分别为第个月的促销费用和产品销量, .
参考公式:(1)样本的相关系数
(2)对于一组数据, , , ,其回归方程的斜率和截距的最小二乘估计分别为, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)画出f(x)的图像,并指出f(x)的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com