【题目】将5名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有种不同的方案;若每项比赛至少要安排一人时,则共有种不同的方案,其中的值为( )
A. 543 B. 425 C. 393 D. 275
科目:高中数学 来源: 题型:
【题目】已知圆C过点,且与圆M:关于直线对称.
求圆C的方程;
过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.
证明:平面PNB;
设点E是棱PA上一点,若平面DEM,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数);以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的普通方程与曲线的直角坐标方程;
(Ⅱ)若把曲线各点的横坐标伸长到原来的倍,纵坐标变为原来的,得到曲线,求曲线的方程;
(Ⅲ)设为曲线上的动点,求点到曲线上点的距离的最小值,并求此时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年10月24日,世界上最长的跨海大桥一港珠澳大桥正式通车在一般情况下,大桥上的车流速度单位:千米时是车流密度单位:辆千米的函数当桥上的车流密度达到220辆千米时,将造成堵塞,此时车流速度为0;当车流密度不超过20辆千米时,车流速度为100千米时,研究表明:当时,车流速度v是车流密度x的一次函数.
Ⅰ当时,求函数的表达式;
Ⅱ当车流密度x为多大时,车流量单位时间内通过桥上某观测点的车辆数,单位:辆时可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ax2﹣x(a∈R).
(1)当a=1时,求函数f(x)在(1,﹣2)处的切线方程;
(2)当a≤0时,分析函数f(x)在其定义域内的单调性;
(3)若函数y=g(x)的图象上存在一点P(x0 , y0),使得以P为切点的切线m将图象分割为c1 , c2两部分,且c1 , c2分别完全位于切线m的两侧(除了P点外),则称点x0为函数y=g(x)的“切割点“.问:函数f(x)是否存在满足上述条件的切割点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的图象形如汉字“囧”,故称其为“囧函数”.
下列命题:
①“囧函数”的值域为;
②“囧函数”在上单调递增;
③“囧函数”的图象关于轴对称;
④“囧函数”有两个零点;
⑤“囧函数”的图象与直线
至少有一个交点.正确命题的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).
(1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;
(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:
方案一:全场商品打8.5折;
方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com