精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
3
-y2=1
的右焦点F为抛物线C:y2=2px(p>0)的焦点,A(x0,y0)是C上一点,|AF|=
5
4
x0,则x0=(  )
A、4B、6C、8D、16
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出双曲线的右焦点,即为抛物线的焦点,可得p=4,求出抛物线的准线方程,由抛物线的定义,解方程,即可得到所求值.
解答: 解:双曲线
x2
3
-y2=1
的右焦点为(2,0),
抛物线C:y2=2px(p>0)的焦点为(
p
2
,0),
则2=
p
2
,解得,p=4.
则抛物线方程为y2=8x,
准线方程为x=-2,
由抛物线的定义,可得|AF|=x0+2=
5
4
x0
解得,x0=8.
故选B.
点评:本题考查抛物线和双曲线的方程和性质,考查抛物线的定义及运用,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果执行如图所示的程序框图,输入x=6,则输出的y值为(  )
A、2
B、0
C、-1
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),且函数f(x)在区间(2,+∞)上单调递增.如果x1<2<x2,且x1+x2<4,则f(x1)+f(x2)的值(  )
A、可正可负B、恒大于0
C、可能为0D、恒小于0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列满足a1+a2+a3=6,an+1=-
1
an+1
,则a16+a17+a18=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos(2x+
π
3
)+
3
sin2x
(1)求函数f(x)的最小正周期和最大值;
(2)设△ABC的三内角分别是A、B、C.若f(
C
2
)=
1
2
,且AC=1,BC=3,求边AB和sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的S值为       (  )
A、-1
B、3
C、
1
3
D、-5

查看答案和解析>>

科目:高中数学 来源: 题型:

当参数θ变化时,动点P(2cosθ,3sinθ)所确定的曲线为(  )
A、直线B、圆C、椭圆D、双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的偶函数f(x),其图象关于点(1,0)对称,并且x∈[2,4]时,f(x)=(3-x)3
(1)证明:f(x)+f(2-x)=0;
(2)证明:f(x)-f(x+4)=0;
(3)求f(x)在[-2,2]上的解析式,并写出f(x)在R上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C对边分别为a、b、c,且2cos(B-C)-1=4cosBcosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=3,2sinB=sinC,求b,c.

查看答案和解析>>

同步练习册答案