精英家教网 > 高中数学 > 题目详情
17.在等腰三角形ABC中,A=90°,AB=3
(1)在三角形ABC中任取一点,离三个顶点距离都不小于1的概率.
(2)在BC边上任取一点M使BM>$\frac{\sqrt{2}}{2}$AB的概率.

分析 两个都是几何概型,(1)的测度是面积,(2)的测度是长度.

解答 解:(1)由题意,在三角形ABC中任取一点,离三个顶点距离都不小于1的区域为三角形面积除去半径为1的半圆的面积,由几何概型的公式得到P=$\frac{\frac{1}{2}×{3}^{3}-\frac{1}{2}π×{1}^{2}}{\frac{1}{2}×{3}^{2}}=\frac{9-π}{9}$;  (6分)
(2)因为三角形为等腰直角三角形,所以在BC边上任取一点M使BM>$\frac{\sqrt{2}}{2}$AB的是CM,(M是BC 的中点),CM=$\frac{1}{2}$BC,所以在BC边上任取一点M使BM>$\frac{\sqrt{2}}{2}$AB的概率为$\frac{1}{2}$.    (12分)

点评 本题考查了几何概型概率求法;
几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=N(A)/A求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{\begin{array}{l}{x^2},\;\;x>0\\-f(x+1),x≤0.\end{array}\right.$则f(-3)的值为(  )
A.1B.-1C.0D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(1+x)=x2+2x-1,则f(x)=x2-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知两条直线 l1:x+(1+m)y=2-m,l2:mx+2y=16.l1∥l2,则m=(  )
A.1或-2B.1C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如果实数x,y满足约束条件$\left\{\begin{array}{l}{x+y+1≤0}\\{x-y+1≥0}\\{y≥-1}\end{array}\right.$,那么目标函数z=2x-y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,b=2${\;}^{-\frac{4}{3}}$,c=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,则下列关系式中正确的是(  )
A.c<a<bB.b<a<cC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2x-2-x,定义域为R;函数g(x)=2x+1-22x,定义域为[-1,1].
(Ⅰ)判断函数f(x)的单调性(不必证明)并证明其奇偶性;
(Ⅱ)若方程g(x)=t有解,求实数t的取值范围;
(Ⅲ) 若不等式f(g(x))+f(3am-m2-1)≤0对一切x∈[-1,1],a∈[-2,2]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知对k∈R,直线y-kx-1=0与椭圆$\frac{x^2}{2}+\frac{y^2}{m}=1$恒有公共点,则实数m的取值范围是(  )
A.(1,2]B.[1,2)C.[1,2)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x,y满足约束条件$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,则z=$\frac{y}{x}$的取值范围是[0,+∞).

查看答案和解析>>

同步练习册答案