精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE= BB1 , C1F= CC1

(1)求平面AEF与平面ABC所成角α的余弦值;
(2)若G为BC的中点,A1G与平面AEF交于H,且设 = ,求λ的值.

【答案】
(1)解:在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE= BB1,C1F= CC1

∴建立以A为坐标原点,AB,AC,AA1分别为x,y,z轴的空间直角坐标系如图:

则A(0,0,0),A1(0,0,6),B(2,0,0),C(0,2,0),E(2,0,2),F(0,2,4),

=(2,0,2), =(0,2,4),

设平面AEF的法向量为 =(x,y,z)

令z=1.则x=﹣1,y=﹣2,

=(﹣1,﹣2,1),

平面ABC的法向量为 =(0,0,1),

则cos< >= = =

即平面AEF与平面ABC所成角α的余弦值是


(2)解:若G为BC的中点,A1G与平面AEF交于H,

则G(1,1,0),

=

= =λ(1,1,﹣6)=(λ,λ,﹣6λ),

= + =(λ,λ,6﹣6λ)

∵A,E,F,H四点共面,

∴设 =x +y

即(λ,λ,6﹣6λ)=x(2,0,2)+y(0,2,4),

,得λ= ,x=y=

故λ的值为


【解析】(1)建立空间坐标系,求出平面的法向量,利用向量法进行求解即可.(2)利用四点共面, =x +y ,建立方程关系进行求解即可.
【考点精析】认真审题,首先需要了解棱柱的结构特征(两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在坐标轴上,焦距长为2,左准线为

1)求椭圆的方程及其离心率;

2)若过点的直线交椭圆 两点,且为线段的中点,求直线的方程;

3)过椭圆右准线上任一点引圆 的两条切线,切点分别为 .试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的一条切线,切点为B,直线ADE、CFD、CGE都是⊙O的割线,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求证:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知抛物线:,抛物线的准线与交于点

(1)过作曲线的切线,设切点为 ,证明:以为直径的圆经过点

(2)过点作互相垂直的两条直线 与曲线交于两点, 与曲线交于两点,线段 的中点分别为,试讨论直线是否过定点?若过,求出定点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x3+mlog2(x+ )(m∈R,m>0),则不等式f(m)+f(m2﹣2)≥0的解是 . (注:填写m的取值范围)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的图象C在x=﹣ 处的切线方程是y=
(1)若求a,b的值,并证明:当x∈(﹣∞,2]时,g(x)的图象C上任意一点都在切线y= 上或在其下方;
(2)求证:当x∈(﹣∞,2]时,f(x)≥g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数

(1)当q=1时,求f(x)在[﹣1,9]上的值域;

(2)问:是否存在常数q(0<q<10),使得当x[q,10]时,f(x)的最小值为﹣51?若存在,求出q的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出的命题中:

1)已知函数,则

2直线与直线互相垂直的必要不充分条件;

3)已知随机变量服从正态分布,且,则

4)已知圆,圆,则这两个圆恰有两条公切线.

其中真命题的个数为

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线经过点

(1)讨论函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

【答案】(1)单调递减;(2)

【解析】试题分析: (1)利用导数几何意义,求出切线方程,根据切线过点,求出函数的解析式; (2)由已知不等式分离出,得,令,求导得出 上为减函数,再求出的最小值,从而得出的范围.

试题解析:(1)

设切点为

代入

单调递减

(2)恒成立

单调递减

恒大于0

点睛: 本题主要考查了导数的几何意义以及导数的应用,包括求函数的单调性和最值,属于中档题. 注意第二问中的恒成立问题,等价转化为求的最小值,直接求的最小值比较复杂,所以先令,求出在 上的单调性,再求出的最小值,得到的范围.

型】解答
束】
22

【题目】已知是椭圆的两个焦点, 为坐标原点,圆是以为直径的圆,一直线与圆相切并与椭圆交于不同的两点.

(1)求关系式;

(2)若,求直线的方程;

(3)当,且满足时,求面积的取值范围.

查看答案和解析>>

同步练习册答案