【题目】已知函数f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.
【答案】(1){x|x≤-1或x=1};(2);(3).
【解析】试题分析:(1)把代入函数解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段写出函数的解析式,由在上单调递增,则需第一段二次函数的对称轴小于等于,第二段一次函数的一次项系数大于0,且第二段函数的最大值小于等于第一段函数的最小值,联立不等式组后求解的取值范围;(3)把不等式对一切实数恒成立转化为函数对一切实数恒成立,然后对进行分类讨论,利用函数单调性求得的范围,取并集后得答案.
试题解析:(1)当时, ,则;当时,由,得,解得或;当时, 恒成立,∴方程的解集为或.
(2)由题意知,若在R上单调递增,则解得,∴实数的取值范围为.
(3)设,则,不等式对任意恒成立,等价于不等式对任意恒成立.
①若,则,即,取,此时,∴,即对任意的,总能找到,使得,∴不存在,使得恒成立.
②若,则,∴的值域为,∴恒成立③若,当时, 单调递减,其值域为,由于,所以恒成立,当时,由,知, 在处取得最小值,令,得,又,∴,综上, .
科目:高中数学 来源: 题型:
【题目】设函数f(x)=emx+x2-mx.
(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;
(2)若对于任意x1,x2∈[-1,1],都有,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(导学号:05856312)[选修4-5:不等式选讲]
已知函数f(x)=|x-m|-2|x-1|(m∈R).
(Ⅰ)当m=3时,求函数f(x)的最大值;
(Ⅱ)解关于x的不等式f(x)≥0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,
在此几何体中,给出下面四个结论:
①直线BE与直线CF异面; ②直线BE与直线AF异面;
③直线EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方体ABCD-A′B′C′D′的外接球的体积为π,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为( )
A. + B. 3+或+ C. 3+ D. +或2+
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线和在第一象限的交点,且.
(1)求椭圆的标准方程;
(2)设为抛物线上的两个动点,且使得线段的中点在直线上,
为定点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】老师在四个不同的盒子里面放了4张不同的扑克牌,分别是红桃,梅花,方片以及黑桃,让明、小红、小张、小李四个人进行猜测:
小明说:第1个盒子里面放的是梅花,第3个盒子里面放的是方片;
小红说:第2个盒子里面饭的是梅花,第3个盒子里放的是黑桃;
小张说:第4个盒子里面放的是黑桃,第2个盒子里面放的是方片;
小李说:第4个盒子里面放的是红桃,第3个盒子里面放的是方片;
老师说:“小明、小红、小张、小李,你们都只说对了一半.”则可以推测,第4个盒子里装的是( )
A. 红桃或黑桃 B. 红桃或梅花
C. 黑桃或方片 D. 黑桃或梅花
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,
f(x)=.
(1)求函数f(x)的解析式;
(2)解不等式f(x2-1)>-2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com