精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1

(2)若函数f(x)R上单调递增,求实数a的取值范围;

(3)是否存在实数a,使不等式f(x)≥2x3对任意xR恒成立?若存在,求出a的取值范围;若不存在,请说明理由.

【答案】(1){x|x1x1};(2;(3

【解析】试题分析:1)把代入函数解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段写出函数的解析式,由上单调递增,则需第一段二次函数的对称轴小于等于,第二段一次函数的一次项系数大于0,且第二段函数的最大值小于等于第一段函数的最小值,联立不等式组后求解的取值范围;(3)把不等式对一切实数恒成立转化为函数对一切实数恒成立,然后对进行分类讨论,利用函数单调性求得的范围,取并集后得答案.

试题解析:(1)时, ;当时,由,得,解得时, 恒成立,∴方程的解集为

(2)由题意知,若R上单调递增,则解得∴实数的取值范围为.

(3),不等式对任意恒成立,等价于不等式对任意恒成立.

①若,则,即,此时即对任意的,总能找到,使得∴不存在,使得恒成立.

②若,则的值域为恒成立③若,当时, 单调递减,其值域为由于,所以恒成立,当时,由,知 处取得最小值,令,得,又综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=emxx2mx.

(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;

(2)若对于任意x1x2∈[-1,1],都有,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856312)[选修4-5:不等式选讲]

已知函数f(x)=|xm|-2|x-1|(m∈R).

(Ⅰ)当m=3时,求函数f(x)的最大值;

(Ⅱ)解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点处的切线方程;

(2)令,讨论的单调性并判断有无极值,若有,求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中ABCD为正方形,EF分别为PAPD的中点,

在此几何体中,给出下面四个结论:

直线BE与直线CF异面; 直线BE与直线AF异面;

直线EF平面PBC平面BCE平面PAD.

其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体ABCD-A′B′C′D′的外接球的体积为π,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为(  )

A. B. 3+ C. 3+ D. 或2+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线在第一象限的交点,且

(1)求椭圆的标准方程;

(2)设为抛物线上的两个动点,且使得线段的中点在直线上,

为定点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】老师在四个不同的盒子里面放了4张不同的扑克牌,分别是红桃,梅花,方片以及黑桃,让明、小红、小张、小李四个人进行猜测:

小明说:第1个盒子里面放的是梅花,第3个盒子里面放的是方片

小红说:第2个盒子里面饭的是梅花,第3个盒子里放的是黑桃

小张说:第4个盒子里面放的是黑桃,第2个盒子里面放的是方片

小李说:第4个盒子里面放的是红桃,第3个盒子里面放的是方片

老师说:“小明、小红、小张、小李,你们都只说对了一半.”则可以推测,第4个盒子里装的是( )

A. 红桃或黑桃 B. 红桃或梅花

C. 黑桃或方片 D. 黑桃或梅花

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数f(0)0x>0

f(x).

(1)求函数f(x)的解析式;

(2)解不等式f(x21)>2.

查看答案和解析>>

同步练习册答案