精英家教网 > 高中数学 > 题目详情
已知函数f(x)是R上的偶函数,且f(x+1)•f(x-1)=1,f(x)>0恒成立,则f(2011)=
1
1
分析:由题意,可根据f(x+1)•f(x-1)=1,f(x)>0恒成立解出函数的周期为4及f(1)=f(-1)=1,再由周期性得出f(2011)=f(-1)即可求出f(2011)的值
解答:解:由f(x+1)•f(x-1)=1知,函数自变量相差2,函数值互为倒数,故函数周期是4
再令x=0可得f(1)•f(-1)=1,又f(x)>0恒成立
所以f(1)=f(-1)=1
∵2011=503×4-1
∴f(2011)=f(-1)=1
故答案为1
点评:本题考查函数奇偶性的性质,解题的关键是充分利用恒等式求出函数的周期以及某些函数值,利用题设中的恒等式求出函数的周期及通过赋值求出f(-1)=1是解题的难点.本题考查了观察分析的能力及灵活变形的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是R上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么|f(x+1)|<1的解集的补集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,f(x)在区间[0,3]上是增函数,则f(x)在[-9,9]上零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的减函数,A(0,-2),B(-3,2)是其图象上的两点,那么不等式|f(x-2)|>2的解集是
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的奇函数,且f(1)=1,那么f(-1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的偶函数.
(1)证明:f(x)=f(|x|)
(2)若当x≥0时,f(x)是单调函数,求满足f(x)=f(
x+3x+4
)
的所有x之和.

查看答案和解析>>

同步练习册答案