精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(Ⅰ)讨论函数在定义域内的极值点的个数;
(Ⅱ)若函数处取得极值,对,恒成立,
求实数的取值范围;
(Ⅲ)当时,试比较的大小.

(Ⅰ)当上没有极值点,当时,上有一个极值点(Ⅱ)(Ⅲ)当时,,当时,.

解析试题分析:(Ⅰ)由已知得
所以当时,上恒成立,函数 在单调递减,
上没有极值点;
时,由
上递减,在上递增,即处有极小值.
∴当上没有极值点,
时,上有一个极值点.                               ……3分
(Ⅱ)∵函数处取得极值,∴
,                                        ……5分
,可得上递减,在上递增,
,即.                                 ……7分
(Ⅲ)由(Ⅱ)知在(0,e2)上单调减,
时,
.
时,,∴, ∴
时,,∴, ∴.
……12分
考点:本小题主要考查利用导数判断极值点的个数、利用导数解决恒成立问题和利用导数证明不等式等问题,考生学生的逻辑思维能力和运算求解能力.
点评:导数是研究函数性质的一个比较好的工具,给出函数可以利用导数考查函数的性质,恒成立问题可以转化为最值问题来解决,如果最值不好求,可以构造新函数再次利用导数求解,一定要灵活运用导数,使导数的功能完全发挥出来.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)若,求的最小值;
(Ⅱ)若当,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)  如图,由y=0,x=8,y=x2围成的曲边三角形,在曲线弧OB上求一点M,使得过M所作的y=x2的切线PQ与OA,AB围成的三角形PQA面积最大。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求的取值范围;
(3)若对任意,且恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)设k∈R,函数   ,,x∈R.试讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数的图像与直线相切于点.
(Ⅰ)求的值;
(Ⅱ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是函数的一个极值点。
(Ⅰ)求
(Ⅱ)求函数的单调区间;
(Ⅲ)若直线与函数的图象有3个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(1)当时, 若个零点, 求的取值范围;
(2)对任意, 当时恒有, 求的最大值, 并求此时的最大值。

查看答案和解析>>

同步练习册答案