精英家教网 > 高中数学 > 题目详情
已知数列{an}的每项均为正数,首项a1=1.记数列{an}前n项和为Sn,满足a13+a23+…+an3=Sn2
(1)求a2的值及数列{an}的通项公式;
(2)若bn=
1
anan+3
,记数列{bn}前n项和为Tn,求证:Tn
11
18
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知当n=2时,1+a23=(1+a2)2,解得a2=2.an+12=2(a1+a2+…+an)+an+1,从而an+1-an=1,进而数列{an}的首项为1,公差为1的等差数列,由此求出an=n.
(2)由
1
anan+3
=
1
n(n+3)
=
1
3
(
1
n
-
1
n+3
)
,利用裂项求和法能证明Tn
11
18
解答: 解:(1)∵a1=1,a13+a23+…+an3=Sn2
∴当n=2时,1+a23=(1+a2)2,解得a2=2.
由于a13+a23+…+an3=(a1+a2+…+an)2
a13+a23+…+an3+an+13=(a1+a2+…+an+an+1)2
②-①得an+13=(a1+a2+…+an+an+1)2-(a1+a2+…+an)2
∵an>0,∴an+12=2(a1+a2+…+an)+an+1③,
同样有an2=2(a1+a2+…+an-1)+an(n≥2),④.
③-④an+12-an2=an+1+an
∴an+1-an=1,∵a2-a1=1,即当n≥1时都有:an+1-an=1,
∴数列{an}的首项为1,公差为1的等差数列.故an=n.(7分)
(2)由(1)知an=n,则
1
anan+3
=
1
n(n+3)
=
1
3
(
1
n
-
1
n+3
)

Tn=
1
a1a4
+
1
a2a5
+
1
a3a6
+…+
1
anan+3
=
1
3
(
1
1•4
+
1
2•5
+
1
3•6
+…+
1
n(n+3)
)=
1
3
(1-
1
4
+
1
2
-
1
5
+…+
1
n
-
1
n+3
)

=
1
3
(1+
1
2
+
1
3
-
1
n+1
-
1
n+2
-
1
n+3
)<
11
18

∴Tn
11
18
.(14分)
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={-1,0,1},B={x|x2-x<2},则集合A∩B=(  )
A、{-1,0,1}
B、{-1,0}
C、{0,1}
D、{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

三次函数f(x)=x3+bx2+cx+d(b,c,d∈R)在区间[-1,2]上是减函数,那么b+c的取值范围是(  )
A、(-∞, 
15
2
)
B、(-∞, -
15
2
)
C、A(x0,f(x0))
D、(-∞,-
15
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为双曲线C:
x
2
 
-y2=1
的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=(  )
A、
1
4
B、
3
4
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,a1=1,a4=8,在an和an+1之间插入bn个数得到一个新数列{cn},已知b1=1,{cn}为等差数列
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC,bc=2b2+2c2-2a2,a=1,sinB+sinc=
10
2
,求b值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,c2=a2+b2)右支(在第一象限内)上的任意一点.A1,A2分别是左右顶点,O是坐标原点,直线PA1,PO,PA2的斜率分别为k1,k2,k3,则斜率之积k1k2k3的取值范围是(  )
A、(0,
a3
b3
B、(0,
b3
a3
C、(0,
a3
c3
D、(0,
b3
c3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是两个相互独立事件,P(A),P(B)分别表示它们发生的概率,则1-P(A)P(B)是下列哪个事件的概率(  )
A、事件A,B同时发生
B、事件A,B至少有一个发生
C、事件A,B至多有一个发生
D、事件A,B都不发生

查看答案和解析>>

科目:高中数学 来源: 题型:

sin21°+sin22°+sin23°+sin288°+sin289°+sin290°=(  )
A、45
B、45
1
2
C、
46+
2
2
D、
90+
2
2

查看答案和解析>>

同步练习册答案