精英家教网 > 高中数学 > 题目详情
已知函数.
(1)若,求证:当时,
(2)若在区间上单调递增,试求的取值范围;
(3)求证:.
(1) 详见解析;(2) 的取值范围;(3)详见解析.

试题分析:(1) 当时,求证:当时,,将代入,得,注意到,只要证明当时,单调递增,则,由于中含有指数函数,可对求导得,只需证明当时,即可,注意到,只要证明当时,单调递增即可,因此令,对求导得,显然当时,,问题得证;(2) 求实数的取值范围,由于在区间上单调递增,则当时,,故对求导得,即当时,恒成立,即)恒成立,只需求出的最小值即可,令,对求导得,令导数等于零,解出的值,从而的最小值,进而得实数的取值范围;
(3)求证:,由(1) 知:当时,,即,可得,两边取对数得,令,得,再令,得个式子相加,然后利用放缩法可证得结论.
试题解析:(1) ,则h(x)=,∴h′(x)=ex-1>0(x>0),
∴h(x)=f′(x)在(0,+∞)上递增,∴f′(x)>f′(0)=1>0,
∴f(x)=exx2在(0,+∞)上单调递增,故f(x)>f(0)=1.(     4分)
(2) f′(x)=ex-2kx,下面求使 (x>0)恒成立的k的取值范围.
若k≤0,显然f′(x)>0,f(x)在区间(0,+∞)上单调递增;
记φ(x)=ex-2kx,则φ′(x)=ex-2k,
当0<k<时,∵ex>e0=1, 2k<1,∴φ′ (x)>0,则φ(x)在(0,+∞)上单调递增,
于是f′(x)=φ(x)>φ(0)=1>0,∴f(x)在(0,+∞)上单调递增;
当k≥时,φ(x)=ex-2kx在(0,ln 2k)上单调递减,在(ln 2k,+∞)上单调递增,
于是f′(x)=φ(x)≥φ(ln 2k)=eln 2k-2kln 2k,
由eln 2k-2kln 2k≥0得2k-2kln 2k≥0,则≤k≤
综上,k的取值范围为(-∞,].      9分
另解:(2) ,下面求使(x>0)恒成立的k的取值范围.
)恒成立。记

上单调递减,在上单调递增。
  
综上,k的取值范围为(-∞,].(    9分)
(3)由(1)知,对于x∈(0,+∞),有f(x)=exx2+1,∴e2x>2x2+1,
则ln(2x2+1)<2x,从而有ln(+1)< (n∈N*),
于是ln(+1)+ln(+1)+ln(+1)+ +ln(+1)<+ ++ +=2+2(1-+ +)=4-<4,故(+1)(+1)(+1) (+1)<e4.(     14分)
另解:(3)由(1)知,对于x∈(0,+∞),有f(x)=exx2+1,∴e2x>2x2+1,
则ln(2x2+1)<2x,从而有ln(+1)< (n∈N*),



于是ln(+1)+ln (+1)+ln(+1)+ +ln(+1)<
故(+1)(+1)(+1) (+1)<e4.    (     14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln(x+1)-x2x.
(1)若关于x的方程f(x)=-xb在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(2)证明:对任意的正整数n,不等式2++…+ >ln(n+1)都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求函数的单调区间;
(2)若恒成立,求实数的取值范围;
(3)设,若对任意的两个实数满足,总存在,使得成立,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的最小值;
(2)设
(ⅰ)证明:当时,的图象与的图象有唯一的公共点;
(ⅱ)若当时,的图象恒在的图象的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
⑴当时,①若的图象与的图象相切于点,求的值;
上有解,求的范围;
⑵当时,若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)当时,求的单调区间;
(Ⅱ)若当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)求证:函数上单调递增;
(Ⅱ)设,若直线PQ∥x轴,求P,Q两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,设
(Ⅰ)求函数的单调区间
(Ⅱ)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值
(Ⅲ)是否存在实数,使得函数的图象与函数的图象恰有四个不同交点?若存在,求出实数的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+ln xg(x)=ex.
(1)当a≤0时,求f(x)的单调区间;
(2)若不等式g(x)< 有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案