精英家教网 > 高中数学 > 题目详情
10.己知函数f(x)满足f(1)=$\frac{1}{4}$,对任意x,y∈R都有4f(x)f(y)=f(x+y)+f(x-y),则f(2017)=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.0D.1

分析 根据条件判断函数f(x)是周期函数,利用函数的周期性进行求解即可.

解答 解:取x=1,y=0得$f(0)=\frac{1}{2}$
法一:根据已知知$f(1)=\frac{1}{4}$
取x=1,y=1得f(2)=-$\frac{1}{4}$
取x=2,y=1得f(3)=-$\frac{1}{2}$
取x=2,y=2得f(4)=-$\frac{1}{4}$
取x=3,y=2得f(5)=$\frac{1}{4}$
取x=3,y=3得f(6)=$\frac{1}{2}$
猜想得周期为6;
法二:取x=1,y=0得$f(0)=\frac{1}{2}$
取x=n,y=1,有f(n)=f(n+1)+f(n-1),
同理f(n+1)=f(n+2)+f(n)
联立得f(n+2)=-f(n-1)
所以f(n)=-f(n+3)=f(n+6)
所以函数是周期函数,周期T=6,
故f(2017)=f(336×6+1)=f(1)=$\frac{1}{4}$,
故选:A.

点评 本题主要考查函数值的计算,准确找出周期是此类问题(项数很大)的关键,分别可以用归纳法和演绎法得出周期,解题时根据自己熟悉的方法得出即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数$f(x)=-\frac{1}{1+x}$在x∈[1,+∞)上的值域为(  )
A.$({-∞,-\frac{1}{2}}]$B.$[{-\frac{1}{2},+∞})$C.$[{-\frac{1}{2},0})$D.$[-\frac{1}{2},0]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题P:对m∈[-1,1],不等式a2-5a-3≥m+2恒成立;命题q:x2+ax+2<0有解,若P∧(¬q)为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若将函数f(x)=2sin(3x+$\frac{5π}{12}$)的图象向右平移$\frac{2π}{9}$个单位后得到函数g(x)的图象,g($\frac{1}{3}$x)在[-$\frac{π}{3}$,$\frac{5π}{6}$]上的最大值(  )
A.1B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若关于x的方程ax2+bx+c=0(a≠0)的两个实根为1或2,则函数f(x)=cx2+bx+a的零点为(  )
A.1,2B.-1,-2C.1,$\frac{1}{2}$D.-1,-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图为函数f(x)=Msin(ωx+φ)(M>0,ω>0,0≤φ≤π)的部分图象,若点A、B分别为函数f(x)的最高点与最低点,且|AB|=5,那么f(-1)=(  )
A.2B.$\sqrt{3}$C.-$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列x1,x2,…,xn,…满足x1=$\frac{1}{3}$,xn+1=${{x}_{n}}^{2}$+xn(n∈N•),则$\frac{1}{{x}_{1}+1}$+$\frac{1}{{x}_{2}+1}$+…+$\frac{1}{{x}_{2013}+1}$的整数部分是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=f(x)是奇函数,根据y=f(x)在[0,5]上的图象作出y=f(x)在[-5,0)上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$|tan(2x-\frac{π}{4})|$的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.πD.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案