精英家教网 > 高中数学 > 题目详情
18.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,短轴端点与椭圆的两个焦点所构成的三角形面积为1,过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的方程;
(2)是否存在定点$E(0,\frac{11}{4})$,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒为定值.若存在求出这个定值;若不存在,说明理由.

分析 (1)根据椭圆的性质列方程解出a,b;
(2)联立方程组消元,得出A,B坐标的关系,代入向量的数量积公式计算即可.

解答 解:(1)根据$\frac{c}{a}=\frac{{\sqrt{2}}}{2},bc=1$,
解得$a=\sqrt{2},b=c=1$,
椭圆C的方程为$\frac{x^2}{2}+{y^2}=1$.
(2)设A(x1,y1),B(x2,y2),联立方程得,$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=kx+2\end{array}\right.$,
消y得(1+2k2)x2+8kx+6=0,
则x1+x2=-$\frac{8k}{1+2{k}^{2}}$,x1x2=$\frac{6}{1+2{k}^{2}}$.
又∴y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=-$\frac{2{k}^{2}-4}{2{k}^{2}+1}$,
y1+y2=(kx1+2)+(kx2+2)=k(x1+x2)+4=$\frac{4}{2{k}^{2}+1}$.
∵$\overrightarrow{EA}=({x_1},{y_1}-\frac{11}{4}),\overrightarrow{EB}=({x_2},\frac{11}{4}-{y_2})$,
∴$\overrightarrow{EA}•\overrightarrow{EB}={x_1}{x_2}+\frac{121}{16}-\frac{11}{4}({y_1}+{y_2})$=$\frac{6}{{2{k^2}+1}}+\frac{121}{16}-\frac{11}{4}×\frac{4}{{2{k^2}+1}}-\frac{{2{k^2}-4}}{{2{k^2}+1}}$
=$\frac{{105(2{k^2}+1)}}{{16(2{k^2}+1)}}=\frac{105}{16}$.
故$\overrightarrow{AE}$•$\overrightarrow{BE}$恒为定值$\frac{105}{16}$.

点评 本题考查了椭圆的性质,直线与椭圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)已知x${\;}^{\frac{1}{4}}$+x${\;}^{-\frac{1}{4}}$=2,求x+x-1的值;
(2)计算:($\frac{1}{16}$)${\;}^{-\frac{1}{4}}$-3${\;}^{lo{g}_{3}2}$(log34)•(log827)+2log12$\sqrt{3}$+log${\;}_{\frac{1}{12}}$$\frac{1}{4}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.Sn为数列{an}的前n项和,已知an>0,an2+an=2Sn
(Ⅰ)求{an}的通项公式;
(Ⅱ)若bn=$\frac{2}{{a}_{n}•{a}_{n+2}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将960人随机编号为1,2,…,960,用系统抽样法从中抽取32人作调查,若分组后在第一组采用简单随机抽样的方法抽到的号码为9,则应在编号落入[450,750]的人中抽取的人数为(  )
A.15B.10C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l经过直线3x+4y-2=0与直线x-y+4=0的交点P,且垂直于直线x-2y-1=0
(Ⅰ)求直线l的方程
(Ⅱ)直线l与曲线y2+2x=0交于A,B两点,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知斜率为k的直线l过点M(1,0),且与抛物线x2=2y交于A,B两点,若动点P在y轴的右侧且满足$\overrightarrow{OP}=\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}$)(O为坐标原点).
(1)求动点P的轨迹方程;
(2)记动点P的轨迹为C,若曲线C的切线斜率为λ,满足$\overrightarrow{MB}=λ\overrightarrow{MA}$,点A到y轴的距离为a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列结论:
①一次试验中不同的基本事件不可能同时发生;
②设k<3,k≠0,则$\frac{x^2}{3-k}-\frac{y^2}{k}=1$与$\frac{x^2}{5}+\frac{y^2}{2}=1$必有相同的焦点;
③点P(m,3)在圆(x-2)2+(y-1)2=2的外部;
④已知ab<0,bc<0,则直线ax+by-c=0通过第一、三、四象限.
其中正确的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知递增数列{an}的前n项和为Sn,且满足$2{S_n}=a_n^2+n$.
(I)求an
(II)设${b_n}={a_{n+1}}•{2^n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线ax+by+c=0始终平分圆C:x2+y2-2x+4y-4=0(C为圆心)的周长,设直线l:(2a-b)x+(2b-c)y+(2c-a)=0,过点P(6,9)作l的垂线,垂足为H,则线段CH长度的取值范围是[$\sqrt{2},9\sqrt{2}$].

查看答案和解析>>

同步练习册答案