精英家教网 > 高中数学 > 题目详情
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是
(-∞,2-2
2
]∪[2+2
2
,+∞)
(-∞,2-2
2
]∪[2+2
2
,+∞)
分析:由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.
解答:解:由圆的方程(x-1)2+(y-1)2=1,得到圆心坐标为(1,1),半径r=1,
∵直线(m+1)x+(n+1)y-2=0与圆相切,
∴圆心到直线的距离d=
|m+n|
(m+1)2+(n+1)2
=1,
整理得:m+n+1=mn≤(
m+n
2
2
设m+n=x,则有x+1≤
x2
4
,即x2-4x-4≥0,
∵x2-4x-4=0的解为:x1=2+2
2
,x2=2-2
2

∴不等式变形得:(x-2-2
2
)(x-2+2
2
)≥0,
解得:x≥2+2
2
或x≤2-2
2

则m+n的取值范围为(-∞,2-2
2
]∪[2+2
2
,+∞).
故答案为:(-∞,2-2
2
]∪[2+2
2
,+∞).
点评:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,基本不等式,以及一元二次不等式的解法,利用了转化及换元的思想,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津)设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且坐标原点O到直线l的距离为
3
,则△AOB的面积S的最小值为(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省无锡一中高三(上)第一次质量检测数学试卷(文科)(解析版) 题型:填空题

设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为   

查看答案和解析>>

同步练习册答案