【题目】四边形OABC的四个顶点坐标分别为O(0,0)、A(6,2)、B(4,6)、C(2,6),直线y=kx(<k<3)分四边形OABC为两部分,S表示靠近x轴一侧的那一部分的面积.
(1)求S=f(k)的函数表达式;
(2)当k为何值时,直线y=kx将四边形OABC分为面积相等的两部分?
【答案】(1);(2).
【解析】试题分析:(1)由题意画出图象,讨论当,此时要求的面积为三角形,由|OA|及交点到直线OA的距离求解即可;当此时要求的面积为四边形,以OB为底边分成上下两个三角形求面积和即可;
(2)由(1)和条件列出方程求出k的值.
试题解析:
(1)因为,所以需分两种情况:
①<k<时,直线y=kx与直线AB:2x+y=14相交.
由得交点P1(,),
又点P1到直线OA:x-3y=0的距离为
d=,
∴S=|OA|·d=.
②当≤k<3时,直线y=kx与直线BC:y=6交于P2(,6).∴S△OP2C=|P2C|·6=.
又S△OAB+S△OBC=S四边形OABC=20.
∴S=20-=26-.
故S=f(k)=
(2)若直线y=kx平分四边形OABC的面积,
由(1)知,只需=10,解得k=.
科目:高中数学 来源: 题型:
【题目】已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)若圆C的半径为 ,求实数a的值;
(2)若弦AB的长为6,求实数a的值;
(3)当a=1时,圆O:x2+y2=2与圆C交于M,N两点,求弦MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合M={x|x<2},集合N={x|0<x<1},则下列关系中正确的是( )
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,G是AB延长线上的一点,GCD是圆O的割线,过点G作AG的垂线,交直线AC于点E,交直线 AD于点F,过点G作圆O的切线,切点为H.
(1)求证:C,D,E,F四点共圆;
(2)若GH=8,GE=4,求EF的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F,F,左右顶点分别为A,B,且|F1F2|=4,|AB|=4
(1)求椭圆的方程;
(2)过F1的直线l与椭圆C相交于M,N两点,若△MF2N的面积为 ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,设表示数列前项, , , 中的最大项.数列满足: .
()若,求的前项和.
()设数列为等差数列,证明: 或者(为常数),, , , .
()设数列为等差数列,公差为,且.
记,
求证:数列是等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com