【题目】如图,四棱锥的底面为矩形,平面平面,点在线段上,且平面.
(1)求证:平面;
(2)若点是线段上靠近的三等分点,点在线段上,且平面,求的值.
【答案】(1)见解析;(2).
【解析】
(1)证明AS垂直面SBC内的两条相交直线BC、BE,即可证得结论;
(2)取N,O分别为AB,AS的三等分点,且NOSB,连结ON,OM,利用面面平行证得线面平行,再利用勾股定理,即可得答案.
(1)∵平面SAB平面ABCD,面SAB面ABCDAB,BCAB,BC面ABCD,
∴BC面SAB,又AS面SAB,∴ASBC.
∵BE面SAC,AS面SAC,
∴ASBE,又BCBEB,
∴AS面SBC.
(2)取N,O分别为AB,AS的三等分点,且NOSB,连结ON,OM,
∵ONSB,ON面SBC,SB面SBC,
∴ON面SBC,同理OM面SBC,
∵OM,ON面OMN,OMONO,
∴面OMN面SBC,
∵MN面OMN,∴MN面SBC.
由(1)得:OMON,
∴在直角三角形OMN中,ON1,OM4,
∴.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xy中,曲线C的参数方程为为参数),在以为极点,轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为。
(1)求曲线C的极坐标方程;
(2)设直线与曲线C相交于A,B两点,P为曲C上的一动点,求△PAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数的不足近似值和过剩近似值分别为和,则是的更为精确的不足近似值或过剩近似值.我们知道,若令,则第一次用“调日法”后得是的更为精确的过剩近似值,即,若每次都取最简分数,那么第四次用“调日法”后可得的近似分数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知函数 有极值,且函数的极值点是的极值点,其中是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)
(1)求关于的函数关系式;
(2)当时,若函数的最小值为,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级体育课进行一次篮球定点投篮测试,规定每人最多投3次,每次投篮的结果相互独立.在处每投进一球得3分,在处每投进一球得2分,否则得0分.将学生得分逐次累加并用表示,如果的值不低于3分就判定为通过测试,立即停止投篮,否则应继续投篮,直到投完三次为止.现有两种投篮方案:方案1:先在处投一球,以后都在处投;方案2:都在处投篮.已知甲同学在处投篮的命中率为,在处投篮的命中率为.
(1)若甲同学选择方案1,求他测试结束后所得总分的分布列和数学期望;
(2)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块半圆形的空地,政府计划在空地上建一个矩形的市民活动广场ABCD及矩形的停车场EFGH,剩余的地方进行绿化,其中半圆的圆心为O,半径为r,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且∠BOG=60°,设∠BOC=.
(1)记市民活动广场及停车场的占地总面积为,求的表达式;
(2)当cos为何值时,可使市民活动广场及停车场的占地总面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图:
(1)证明:平面平面
(2)求平面与平面所成二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)(c≠0),其图象的对称中心为(,),现已知f(x),数列{an}的通项公式为an=f()(n∈N+),则此数列前2020项的和为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,过点作倾斜角为的直线,以原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,将曲线上各点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线,直线与曲线交于不同的两点.
(1)求直线的参数方程和曲线的普通方程;
(2)求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com