精英家教网 > 高中数学 > 题目详情

上的两个函数,若对任意的,都有上是“接近函数”,[a,b]称为“接近区间”,设

f(x)= x2–4x ,g(x)= x-7在[a,b]上是“接近函数”,则它的“接近区间”可以是         A.[2,3]          B.[1,4]       C.[3,4]       D.[2,4]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、设f(x)和g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤1,则称f(x)和g(x)在[a,b]上是“密切函数”,[a,b]称为“密切区间”,设f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则它的“密切区间”可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①“向量
a
b
的夹角为锐角”的充要条件是“
a
b
>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是
 
.(请写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

10、设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“亲密函数”,区间[a,b]称为“亲密区间”.若f(x)=x2+x+2与g(x)=2x+1在[a,b]上是“紧密函数”,则其“紧密区间”可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

上的两个函数,若对任意的,都有上是“密切函数”,[ab]称为“密切区间”,设上是“密切函数”,则它的“密切区间”可以是             (    )

    A.[1,4]   B.[2,3]   C.[3,4]   D.[2,4]

查看答案和解析>>

同步练习册答案