精英家教网 > 高中数学 > 题目详情

【题目】已知过抛物线Cy28x的焦点且斜率为k的直线与C交于AB两点,若以AB为直径的圆过点M(﹣22),则k=(  )

A.B.C.D.2

【答案】D

【解析】

写出直线的点斜式方程,与抛物线方程联立得出AB两点的坐标关系,根据kAMkBM=﹣1列方程解出k

解:抛物线y28x的焦点F20),设直线AB的方程为ykx2),

联立,得k2x﹣(4k2+8x+4k20

Ax1y1),Bx2y2),

x1+x24x1x24

y1+y2kx1+x2)﹣4ky1y2=﹣16

∵以AB为直径的圆过点M(﹣22),∴kAMkBM=﹣1

1

y1y22y1+y2+4+x1x2+2x1+x2+40

∴﹣164+4+24+40

整理得:k24k+40,解得k2

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若点P是函数上任意一点,则点P到直线的最小距离为 ( )

A. B. C. D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合,直线交圆两点,过点的平行线交于点.

1)证明为定值,并写出点的轨迹方程;

2)设点的轨迹为曲线,直线两点,过点且与直线垂直的直线与圆交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的右焦点为F(2,0),过点F的直线交椭圆于MN两点且MN的中点坐标为

(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线l不经过点P(0,b)且与C相交于AB两点,若直线PA与直线PB的斜率的和为1,试判断直线 l是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为,己知三个社团他都能进入的概率为,至少进入一个社团的概率为,且.

(1)求的值;

(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4— 4:坐标系与参数方程

设极坐标系与直角坐标系有相同的长度单位,原点为极点,轴正半轴为极轴,曲线的参数方程为是参数),直线的极坐标方程为

(Ⅰ)求曲线的普通方程和直线的参数方程;

(Ⅱ)设点,若直线与曲线相交于两点,且,求的值﹒

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过三点.

1)求椭圆的方程;

2)若直线)与椭圆交于两点,证明直线与直线的交点在直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用神七宇宙飞船进行新产品搭载实验,计划搭载新产品AB,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:


产品A()

产品B()


研制成本与塔载
费用之和(万元/)

20

30

计划最大资
金额300万元

产品重量(千克/)

10

5

最大搭载
重量110千克

预计收益(万元/)

80

60


试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

查看答案和解析>>

同步练习册答案