【题目】已知椭圆C: (a>b>0)的离心率e= ,右顶点、上顶点分别为A,B,直线AB被圆O:x2+y2=1截得的弦长为
(1)求椭圆C的方程;
(2)设过点B且斜率为k的动直线l与椭圆C的另一个交点为M, =λ( ),若点N在圆O上,求正实数λ的取值范围.
【答案】
(1)解:由 ,得 ,∴a=2b,
∴直线AB的方程为 ,即x+2y﹣2b=0,
圆心O(0,0)到直线AB的距离为d= ,∴ ,得b=1,
椭圆C的方程为
(2)解:设点M的坐标为(x0,y0)(y0≠0),则点N的坐标为(λx0,λ(y0+1)),
∴ ,得 ,
又 ,
∴ ,y0∈(﹣1,1),得 ,
∴正实数λ的取值范围是[ )
【解析】(1)由题意离心率可得a=2b,设出AB所在直线方程,由圆心到直线的距离求得b,则椭圆方程可求;(2)设点M的坐标为(x0 , y0)(y0≠0),由已知向量等式得点N的坐标为(λx0 , λ(y0+1)),结合N在圆上,M在椭圆上,分离参数λ求解.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:.
科目:高中数学 来源: 题型:
【题目】已知双曲线C: (a>0,b>0)的离心率为2,右顶点为(1,0).
(1)求双曲线C的方程;
(2)设直线y=-x+m与y轴交于点P,与双曲线C的左、右支分别交于点Q,R,且=2,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点.
(1)求椭圆的方程;
(2)设椭圆与轴的非负半轴交于点,过点作互相垂直的两条直线,分别交椭圆于两点,连接,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形为正方形,四边形为直角梯形,且, ,平面平面, .
()求证: 平面.
()若二面角为直二面角,
(i)求直线与平面所成角的大小.
(ii)棱上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线 ,曲线C2的参数方程为: ,(θ为参数),以O为极点,x轴的正半轴为极轴的极坐标系.
(1)求C1 , C2的极坐标方程;
(2)射线 与C1的异于原点的交点为A,与C2的交点为B,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:的离心率为,其右焦点到椭圆C外一点的距离为,不过原点O的直线l与椭圆C相交于A,B两点,且线段AB的长度为2.
1求椭圆C的方程;
2求面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 通项公式为 .
(Ⅰ)计算f(1),f(2),f(3)的值;
(Ⅱ)比较f(n)与1的大小,并用数学归纳法证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
已知函数f(x)=|x﹣m|﹣1.
(1)若不等式f(x)≤2的解集为{x|﹣1≤x≤5},求实数m的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥t﹣2对一切实数x恒成立,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com