精英家教网 > 高中数学 > 题目详情
18.如图所示为二次函数y=ax2+bx+c的图象,则|OA|•|OB|等于(  )
A.$\frac{c}{a}$B.-$\frac{c}{a}$C.±$\frac{c}{a}$D.-$\frac{a}{c}$

分析 由函数图象我们可以分析出A,B分别是二次函数y=ax2+bx+c的图象与X轴的交点,则|OA|•|OB|=|x1x2|=|$\frac{c}{a}$|,由图象开口朝下,得a<0,由函数图象与y轴的交点在x轴上方,得c>0,代入根据绝对值的定义即可得到答案.

解答 解:由图易得:A,B分别是二次函数y=ax2+bx+c的图象与X轴的交点,
则|OA|=|x1|,|OB|=|x2|
又∵图象开口朝下,
∴a<0,
又∵函数图象与Y轴的交点在X轴上方
∴c>0
∴|OA|•|OB|=|OA•OB|=|x1x2|=|$\frac{c}{a}$|=-$\frac{c}{a}$,
故选:b

点评 本题考查的知识点是二次函数的图象图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax2-2x+1.
(1)试讨论函数f(x)的单调性;
(2)若$\frac{1}{3}$≤a≤1,且f(x)在[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a),求g(a)的表达式;
(3)在(2)的条件下,求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=lnx+x-2的零点x0∈[a,b],且b-a=1,a,b∈N*,则a+b=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{3{x}^{2}-4,x≥4}\\{0,x<0}\end{array}\right.$,则f(f(1))=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{x}{1+x}\sqrt{\frac{1+x}{1-x}}$的奇偶性是(  )
A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(2,4)在抛物线y2=2px上,且抛物线的准线过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,若双曲线的离心率为2,则该双曲线的方程为${x}^{2}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.则“x=2”是“x2-3x+2=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线l1:y=kx-2和直线l2:2x+y=4的交点在第一象限,则直线l1的倾斜角的范围是(  )
A.($\frac{π}{6}$,$\frac{π}{4}$)B.($\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{4}$,$\frac{π}{2}$]D.($\frac{π}{4}$,$\frac{π}{3}$]

查看答案和解析>>

同步练习册答案