A. | f(x)=$\root{4}{{x}^{4}}$与g(x)=($\root{4}{x}$)4 | B. | f(x)=x与g(x)=$\root{3}{{x}^{3}}$ | ||
C. | f(x)=lnex与g(x)=elnx | D. | f(x)=$\frac{{x}^{2}-4}{x+2}$ 与g(x)=x-2 |
分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.
解答 解:对于A,f(x)=$\root{4}{{x}^{4}}$与g(x)=($\root{4}{x}$)4定义域不同,所以不是同一函数;
对于B,函数y(x)=x与g(x)=$\root{3}{{x}^{3}}$的定义域相同,对应关系也相同,所以是同一函数;
对于C,f(x)=lnex与g(x)=elnx的对应关系不同,所以不是同一函数;
对于D,函数(x)=$\frac{{x}^{2}-4}{x+2}$ 与g(x)=x-2的定义域不同,所以不是同一函数.
故选:B.
点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 32 | B. | 31 | C. | 30 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 锐角三角形 | B. | 以∠C为直角的Rt△ | C. | 钝角三角形 | D. | 以∠A为直角的Rt△ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com