精英家教网 > 高中数学 > 题目详情
6.△ABC的三角A,B,C的对边分别为a,b,c满足(2b-c)cosA=acosC.
(1)求A的值;
(2)若a=2,求△ABC面积的最大值;
(3)若a=2,求△ABC周长的取值范围.

分析 (1)利用正弦定理化简已知的等式,再利用两角和的正弦函数公式及诱导公式化简,根据sinB不为0,得到cosA的值,由A的范围,利用特殊角的三角函数值即可求出A的度数.
(2)由余弦定理a2=b2+c2-2bccosA的式子,得到b2+c2-bc=4,结合基本不等式求出bc≤4,再用正弦定理的面积公式算出当且仅当b=c=2时,△ABC的面积的最大值为$\sqrt{3}$.
(3)利用余弦定理结合基本不等式,可求△ABC的周长的取值范围.

解答 解:(1)将(2b-c)cosA=acosC代入正弦定理得:
(2sinB-sinC)cosA=sinAcosC,
即2sinBcosA=sinCcosA+cosCsinA=sin(A+C)=sinB,
由B∈(0,180°),得到sinB≠0,
所以cosA=$\frac{1}{2}$,又A∈(0,180°),
则A的度数为60°.
(2)∵a=2,A=60°,
∴由余弦定理a2=b2+c2-2bccosA,得
4=b2+c2-2bccos60°,即b2+c2-bc=4
∴b2+c2=4+bc≥2bc,可得bc≤4
又∵△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc≤$\sqrt{3}$
∴当且仅当b=c=2时,△ABC的面积的最大值为$\sqrt{3}$,此时△ABC是等边三角形.
(3)由题意,b>0,c>0,b+c>a=2,
∴由余弦定理4=b2+c2-2bccos60°=(b+c)2-3bc≥$\frac{1}{4}$(b+c)2(当且仅当b=c时取等号),
∴b+c≤4,
∵b+c>2,
∴2<b+c≤4,
∴△ABC的周长的取值范围为(4,6].

点评 此题考查了正弦定理,余弦定理,基本不等式,两角和的正弦函数公式及诱导公式,熟练掌握定理及公式是解本题的关键,学生在求值时注意运用三角形内角和定理这个隐含条件,同时注意角度的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数y=($\frac{1}{2}$)|x-a|在区间(2,+∞)递减,则a的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\frac{{x}^{3}}{3}$+(a-1)x2+2x在区间(-∞,-3)内是增函数,则a的取值范围是(-∞,$\frac{17}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)求函数g(x)=x2-ax+3在区间[-1,1]上的最小值.
(2)对函数f(x)(x∈[a,b]),定义f′(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中max{f(x)|x∈D}表示函数f(x)在D上的最大值,若f(x)=x2-1(-2≤x≤3),求f′(x).(可以直接写出结果)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{f(x+1),-1≤x<0}\end{array}\right.$.
(1)分别求f(f(-1))、f(f(1))的值;
(2)求当-1≤x<0时,f(x)的表达式,并画出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知关于x的函数f(x)=1-$\frac{2}{{a}^{x}+1}$(a>0,且a≠1).
(1)若f(2)=$\frac{3}{5}$,求实数a的值;
(2)判断f(x)的奇偶性;
(3)判断f(x)在区间(-∞,+∞)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设x>0,y>0,且x2+$\frac{{y}^{2}}{2}$=1,求x$\sqrt{1+{y}^{2}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x<0}\\{-{x}^{2},x≥0}\end{array}\right.$,则f(f(1))=0,方程f(f(x))=1的解是-$\frac{\sqrt{2+2\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.打鼾不仅影响别人休息,而且可能与患某种疾病有关.表是一次调查所得的数据,
(1)将本题的2*2联表格补充完整.
(2)用提示的公式计算,每一晚都打鼾与患心脏病有关吗?
提示
P(K2≥k)0.1000.0500.010 0.001
k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
患心脏病未患心脏病合计
每一晚都打鼾317a=
不打鼾2128b=
合计c=d=n=

查看答案和解析>>

同步练习册答案