精英家教网 > 高中数学 > 题目详情
3.在△OAB中,O为直角坐标系的原点,A,B的坐标分别为A(3,4),B(-2,y),向量$\overrightarrow{AB}$与x轴平行,则向量$\overrightarrow{OA}$与$\overrightarrow{AB}$所成的余弦值是(  )
A.-$\frac{\sqrt{3}}{5}$B.$\frac{\sqrt{3}}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

分析 由题意画出图形,求出$\overrightarrow{AB}$的坐标,然后利用数量积求夹角公式得答案.

解答 解:如图,
由题意可得,B(-2,4),
∴$\overrightarrow{AB}=(-5,0)$,则$|\overrightarrow{OA}|=\sqrt{{3}^{2}+{4}^{2}}=5$,$|\overrightarrow{AB}|=5$,
$\overrightarrow{OA}•\overrightarrow{AB}=3×(-5)+4×0=-15$,
设向量$\overrightarrow{OA}$与$\overrightarrow{AB}$所成的角为θ,
∴cosθ=$\frac{\overrightarrow{OA}•\overrightarrow{AB}}{|\overrightarrow{OA}|•|\overrightarrow{AB}|}=\frac{-15}{5×5}=-\frac{3}{5}$.
故选:C.

点评 本题考查平面向量的数量积运算,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面成60°角,点B1在底面上的射影D为BC的中点,BC=2,二面角A-BB1-C为30°(如图).
(1)求证:平面BCC1B1⊥平面ABC;
(2)求证:AC⊥面BCC1B1
(3)求多面体A-BCC1B1的体积V;
(4)求AB1与平面ACC1A1所成角的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$f(x)=\left\{\begin{array}{l}a{x^2}+1,x≥0\\({a^2}-1){e^{ax}},x<0\end{array}\right.$对定义域内的任意实数x都有$\lim_{△x→0}\frac{f(x+△x)-f(x)}{△x}>0$(其中△x表示自变量的改变量),则a的取值范围是$(1,\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题:
①“若a2<b2,则a<b”的否命题;
②“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;
③“全等三角形面积相等”的逆命题;
④“若$\sqrt{3}$x(x≠0)为有理数,则x为无理数”的逆否命题.
其中真命题序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.(x2-x+2)5的展开式中x3的系数为(  )
A.-20B.-200C.-40D.-400

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α=$\frac{π}{4}$),以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的长度单位,建立极坐标系.曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)求曲线C的直角坐标方程:
(2)设直线1与曲线C相交于A、B两点.求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在梯形ABCD中,AB=10,CD=4,AD=BC=5,动点P从B点开始沿着折线BC,CD,DA前进至A,若P点运动的路程为x,△PAB的面积为y.

(1)求y=f(x)的解析式,并指出函数的定义域;
(2)画出函数的图象并写出函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义某种运算S=a?b,运算原理如图所示,则式子:$sin\frac{5π}{3}?ln\frac{1}{e}+{(\frac{1}{3})^{-\frac{1}{2}}}?lg100$的值是(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,△ABC的外接圆为⊙O,延长CB至Q,再延长QA至P,使得QC2-QA2=BC•QC.
(Ⅰ)求证:QA为⊙O的切线;
(Ⅱ)若AC恰好为∠BAP的平分线,AB=10,AC=15,求QA的长度.

查看答案和解析>>

同步练习册答案