精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀.每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1.两个2.两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
(1)求点P恰好返回到A点的概率;
(2)在点P转一圈恰能返回到A点的所有结果中,用随机变量S表示点P恰能返回到A点的投掷次数,求S的数学期望.
分析:(1)求点P恰好返回到A点的概率,首先我们要对回到A点的情况分类讨论,由于回到原点最少需要两次投掷,最多需要四次投掷,故我们可以分两次、三次、四次,四种情况进行讨论,计算出每种情况性质的概率,相加即得结果.
(2)由(1)的结论我们不难得到ξ的值分别等2,3,4时的概率,然后我们代入数学期望公式即可求解.
解答:解:(Ⅰ)投掷一次正方体玩具,上底面每个数字的出现都是等可能的,其概率为P1=
2
6
=
1
3

因为只投掷一次不可能返回到A点;
若投掷两次点P就恰能返回到A点,
则上底面出现的两个数字应依次为:
(1,3).(3,1).(2,2)三种结果,
其概率为P2=(
1
3
)
2
•3
=
1
3

若投掷三次点P恰能返回到A点,则上底面出现的三个数字应依次为:
(1,1,2).(1,2,1).(2,1,1)三种结果,其概率为P3=(
1
3
)
3
•3
=
1
9

若投掷四次点P恰能返回到A点,则上底面出现的四个数字应依次为:(1,1,1,1)
其概率为P4=(
1
3
)
4
=
1
81

所以,点P恰好返回到A点的概率为P=P2+P3+P4=
1
3
+
1
9
+
1
81
=
37
81

(Ⅱ)在点P转一圈恰能返回到A点的所有结果共有以上问题中的7种,
因为,P(ξ=2)=
3
7
,P(ξ=3)=
3
7
,P(ξ=4)=
1
7

所以,Eξ=2•
3
7
+3•
3
7
+4•
1
7
=
19
7
点评:解决等可能性事件的概率问题,关键是要弄清一次试验的意义以及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的关键.古典概型要求所有结果出现的可能性都相等,强调所有结果中每一结果出现的概率都相同.同时(2)中概率、数学期望的计算也是高考的热点.对于数学期望的计算则要熟练掌握运算方法和步骤.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C);当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
求:
(Ⅰ)需要四次投掷,点P恰返回到A点的概率;
(Ⅱ)点P恰好返回到A点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进. 现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字. 质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D). 在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
(1)求点P恰好返回到A点的概率;
(2)在点P转一圈恰能返回到A点的所有结果中,用随机变量ξ表示点P恰能返回到A点的投掷次数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分13分) 如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点PA点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由AB);当正方体上底面出现的数字是2,质点P前进两步(如由AC),

当正方体上底面出现的数字是3,质点P前进三步(如由A).

在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.

(Ⅰ)求点P恰好返回到A点的概率;

(Ⅱ)在点P转一圈恰能返回到A点的所有结果中,

用随机变量表示点P恰能返回到A点的投掷次数,求的数学期望.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山西省高三第一次模拟试题理科数学试卷(解析版) 题型:解答题

如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.

(1)求质点P恰好返回到A点的概率;

(2)在质点P转一圈恰能返回到A点的所有结果中,用随机变量ξ表示点P恰能返回到A点的投掷次数,求ξ的数学期望.

 

查看答案和解析>>

同步练习册答案