精英家教网 > 高中数学 > 题目详情
某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.918)≈0.05,对此,四名同学作出了以下的判断:
p:有95%的把握认为“能起到预防感冒的作用”;
q:如果某人未使用该血清,那么他在一年中有95%的可能性得感冒;
r:这种血清预防感冒的有效率为95%;
s:这种血清预防感冒的有效率为5%;
则下列结论中,错误结论的序号是(  )
A、p∧¬q
B、pVq
C、(p∧q)∧(r∨s)
D、(p∨r)∧(q∨¬s)
考点:复合命题的真假
专题:概率与统计
分析:根据查对临界值表知P(K2≥3.918)≈0.05,故有95%的把握认为“这种血清能起到预防感冒的作用”,而95%只是指“血清与预防感冒”的可信程度,也有“100个使用血清的人中一个患感冒的也没有”的可能,所以p,正确,q,r,s错误,然后根据由或、且、非连接的命题的真假和原命题真假的关系即可找出错误结论.
解答: 解:查对临界值表知P(k2≥3.918)≈0.05,故有95%的把握认为“这种血清能起到预防感冒的作用”;
95%仅是指“血清与预防感冒”可信程度,但也有“在100个使用血清的人中一个患感冒的人也没有”的可能;
∴p正确,q,r,s错误;
∴p∧q为假,∴(p∧q)∧(r∨s)为假,即该结论错误.
故选C.
点评:独立性检验中研究两个量是否有关,这是一种统计关系,不能认为是因果关系.利用独立性检验不仅能考查两个变量是否有关系,而且能较精确地给出这种判断的可靠性程度.因此,在生物统计、医学统计、处理社会调查问题数据等方面都有广泛的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={-3,x+1,x2},B={x-3,2x-1,x2+1},若A∩B={-3},则实数x等于(  )
A、-4B、-1C、0D、-1或0

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:x2+(a-3)x-3a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线a,b,c,两个平面α,β.则下列命题中:
①a∥c,c∥b⇒a∥b;
②若m⊥α,m∥n,n?β⇒α⊥β;
③a∥c,c∥α⇒a∥α;
④α∥β,a∥α⇒∥β;
⑤a?α,b∥a,a∥b⇒α∥a,
正确的命题是(  )
A、②④B、①②C、①②⑤D、③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

两个等差数列{an},{bn},
a1+a2+…+an
b1+b2+…+bn
=
7n+2
n+3
,则
a5
b5
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题:
①△ABC中,A>B?sinA>sinB.
②△ABC中,A为钝角?a2>c2+b2
③函数y=
1
2
ln
1-cosx
1+cosx
与y=lntan
x
2
是同一函数.
④将函数y=f(x)的图象上每一点的纵坐标缩为原来的
1
2
倍,再将横坐标缩为原来的
1
2
倍,再将整个图象沿x轴向左平移
π
3
,可得y=sinx,则原函数是f(x)=2sin(2x-
π
3
).
在上述四个命题中,真命题的序号是
 
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=ex-e-x的叙述正确的是
 
.(填正确序号)
(1)f(x)为奇函数           
(2)f(x)为增函数
(3)f(x)在x=0处取极值   
(4)f(x)的图象关于点(0,1)对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1<x≤2},B={ x|x<a},若A⊆B,则a的取值范围是(  )
A、{a|a≥1}
B、{a|a≤1}
C、{a|a≥2}
D、{a|a>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-2,2)上的奇函数,且在(-2,2)上的减函数,若函数f(x)满足:f(m-1)+f(2m-1)>0,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案