精英家教网 > 高中数学 > 题目详情

【题目】垃圾分一分,城市美十分;垃圾分类,人人有责.某市为进一步推进生活垃圾分类工作,调动全民参与的积极性,举办了垃圾分类游戏挑战赛.据统计,在为期个月的活动中,共有万人次参与.为鼓励市民积极参与活动,市文明办随机抽取名参与该活动的网友,以他们单次游戏得分作为样本进行分析,由此得到如下频数分布表:

单次游戏得分

频数

1)根据数据,估计参与活动的网友单次游戏得分的平均值及标准差(同一组中的数据用该组区间的中点值作代表);(其中标准差的计算结果要求精确到

2)若要从单次游戏得分在的三组参与者中,用分层抽样的方法选取人进行电话回访,再从这人中任选人赠送话费,求此人单次游戏得分不在同一组内的概率.

附:.

【答案】1)平均值60;标准差13.602

【解析】

(1)直接根据平均值与标准差的公式求解即可.

(2)根据分层抽样设所抽取的人进行编码,再利用枚举法求得所有的基本事件再求概率即可.

1)参与该活动的网友单次游戏得分的平均值

标准差

2)用分层抽样抽取人,其中得分在的有人,得分在的有人,得分在的有人,

分别记为,,,人中任选人,

,共 种结果,

其中人得分在同一组的有种,分别是,

人得分不在同一组内的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知首项大于0的等差数列的公差,且

1)求数列的通项公式;

2)若数列满足:,其中

①求数列的通项

②是否存在实数,使得数列为等比数列?若存在,求出的值,若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若是与无关的常数,)则称数列叫做弱等差数列已知数列满足:,对于恒成立,(其中都是常数)

1)求证:数列弱等差数列,并求出数列的通项公式

2)当时,若数列是单调递增数列,求的取值范围

3)若,且,数列满足:,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点),都在函数)的图像上;

1)若数列是等差数列,求证:数列是等比数列;

2)设,函数的反函数为,若函数与函数的图像有公共点,求证:在直线上;

3)设),过点的直线与两坐标轴围成的三角形面积为,问:数列是否存在最大项?若存在,求出最大项的值,若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与平面满足,则下列命题中正确的是(

A.的充分不必要条件

B.的充要条件

C.,则的必要不充分条件

D.,则的既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在折线中,,,分别是的中点,若折线上满足条件的点至少有个,则实数的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益.据测算,首日参与活动人数为人,以后每天人数比前一天都增加天后捐步人数稳定在第天的水平,假设此项活动的启动资金为万元,每位捐步者每天可以使公司收益元(以下人数精确到人,收益精确到元).

1)求活动开始后第天的捐步人数,及前天公司的捐步总收益;

2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区的微信健步走活动情况,现用分层抽样的方法从中抽取老、中、青三个年龄段人员进行问卷调查.已知抽取的样本同时满足以下三个条件:

i)老年人的人数多于中年人的人数;

ii)中年人的人数多于青年人的人数;

iii)青年人的人数的两倍多于老年人的人数.

①若青年人的人数为4,则中年人的人数的最大值为___________.

②抽取的总人数的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸上分别修建观光长廊AC,其中是宽长廊,造价是元/米,是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.

(1) 若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么的长度分别为多少米?

(2) 在(1)的条件下,建直线通道还需要多少钱?

查看答案和解析>>

同步练习册答案