【题目】垃圾分一分,城市美十分;垃圾分类,人人有责.某市为进一步推进生活垃圾分类工作,调动全民参与的积极性,举办了“垃圾分类游戏挑战赛”.据统计,在为期个月的活动中,共有万人次参与.为鼓励市民积极参与活动,市文明办随机抽取名参与该活动的网友,以他们单次游戏得分作为样本进行分析,由此得到如下频数分布表:
单次游戏得分 | ||||||
频数 |
(1)根据数据,估计参与活动的网友单次游戏得分的平均值及标准差(同一组中的数据用该组区间的中点值作代表);(其中标准差的计算结果要求精确到)
(2)若要从单次游戏得分在、、的三组参与者中,用分层抽样的方法选取人进行电话回访,再从这人中任选人赠送话费,求此人单次游戏得分不在同一组内的概率.
附:,.
科目:高中数学 来源: 题型:
【题目】已知首项大于0的等差数列的公差,且;
(1)求数列的通项公式;
(2)若数列满足:,,,其中;
①求数列的通项;
②是否存在实数,使得数列为等比数列?若存在,求出的值,若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,若(是与无关的常数,)则称数列叫做“弱等差数列”已知数列满足:且,对于恒成立,(其中都是常数)
(1)求证:数列是“弱等差数列”,并求出数列的通项公式
(2)当时,若数列是单调递增数列,求的取值范围
(3)若,且,数列满足:,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点、、、(),都在函数(,)的图像上;
(1)若数列是等差数列,求证:数列是等比数列;
(2)设,函数的反函数为,若函数与函数的图像有公共点,求证:在直线上;
(3)设,(),过点、的直线与两坐标轴围成的三角形面积为,问:数列是否存在最大项?若存在,求出最大项的值,若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线、与平面、满足,,,则下列命题中正确的是( )
A.是的充分不必要条件
B.是的充要条件
C.设,则是的必要不充分条件
D.设,则是的既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益.据测算,首日参与活动人数为人,以后每天人数比前一天都增加,天后捐步人数稳定在第天的水平,假设此项活动的启动资金为万元,每位捐步者每天可以使公司收益元(以下人数精确到人,收益精确到元).
(1)求活动开始后第天的捐步人数,及前天公司的捐步总收益;
(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地区的“微信健步走”活动情况,现用分层抽样的方法从中抽取老、中、青三个年龄段人员进行问卷调查.已知抽取的样本同时满足以下三个条件:
(i)老年人的人数多于中年人的人数;
(ii)中年人的人数多于青年人的人数;
(iii)青年人的人数的两倍多于老年人的人数.
①若青年人的人数为4,则中年人的人数的最大值为___________.
②抽取的总人数的最小值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸和上分别修建观光长廊和AC,其中是宽长廊,造价是元/米,是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.
(1) 若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么和的长度分别为多少米?
(2) 在(1)的条件下,建直线通道还需要多少钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com