精英家教网 > 高中数学 > 题目详情
14.如图,平面四边形EFGH的四个顶点分别在空间四边形ABCD的四条边上,若直线EF与GH相交,则它们的交点M必在直线AC上.

分析 利用线面位置关系即可知道分别在两个相交平面的两相交直线的交点必在两平面的交线上.

解答 解:如图所示.
∵EF?平面ABC,GH?平面ACD,平面ABC∩平面ACD=AC,
∴EF∩GH=M必在直线AC上.
故答案为:AC.

点评 正确理解线面位置关系、平面的基本性质是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设复平面内点z0=1+2i关于直线l:|z-2-2i|=|z|的对称点的复数表示是i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,F1、F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点,A、B为两个顶点,该椭圆的离心率为$\frac{\sqrt{5}}{5}$,△ABO的面积为$\sqrt{5}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)作与AB平行的直线l交椭圆于P、Q两点,|PQ|=$\frac{9\sqrt{5}}{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3),则这个数列的通项公式为an=$\frac{7•{3}^{n-1}+13•(-1)^{n-1}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m.n∈R),则m2+n2-2m-2n+3的取值范围是$(\frac{3}{2},3)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某中学推荐甲、乙、丙、丁4名同学参加A、B、C三所大学的自主招生考试,每名同学只被推荐一所大学,每所大学至少有1名推荐名额,则不推荐甲同学到A大学的推荐方案有24种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若角α的终边经过点A($\sqrt{3}$,a),且点A在双曲线$\frac{x^2}{3}-{y^2}$=1的渐近线上,则sinα=(  )
A.±1B.$±\frac{{\sqrt{2}}}{2}$C.$±\frac{1}{2}$D.$±\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某大学的一个社会实践调查小组,在对大学生的良好“光盘习惯”的调査中,随机发放了l20份问巻.对收回的l00份有效问卷进行统计,得到如下2x2列联表:
做不到光盘能做到光盘合计
451055
301545
合计7525100
(1)现已按是否能做到光盘分层从45份女生问卷中抽取了9份问卷,若从这9份问卷中随机抽取4份,并记其中能做到光盘的问卷的份数为ξ,试求随机变量ξ的分布列和数学期望
(2)如果认为良好“光盘习惯”与性别有关犯错误的概率不超过P,那么根据临界值表最精确的P的值应为多少?请说明理由.
附:独立性检验统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d,
独立性检验临界表:
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某校高一、高二、高三年级的学生人数之比为3:4:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取学生人数为20.

查看答案和解析>>

同步练习册答案