精英家教网 > 高中数学 > 题目详情
9.已知数列{an}满足a1=19,an+1=an-2(n∈N*),则当数列{an}的前n项和Sn取得最大值时,n的值为10.

分析 利用等差数列的通项公式可得:an,令an≥0,解出即可得出.

解答 解:数列{an}满足a1=19,an+1=an-2(n∈N*),即an+1-an=-2,
∴数列{an}是等差数列,首项为19,公差为-2.
∴an=19-2(n-1)=21-2n,
令an=21-2n≥0,
解得n$≤\frac{21}{2}$,解得n≤10.
∴当数列{an}的前n项和Sn取得最大值时,n的值为10.
故答案为:10.

点评 本题考查了等差数列的通项公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)满足f(-2)=f(4)=0,且f(x)在R上有最小值-9
(1)求f(x)的解析式    
(2)求不等式f(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知各项不为0的等差数列{an}满足$2{a_3}-a_7^2+2{a_{11}}=0$,数列{bn}是等比数列,且b7=a7,则b6b8=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=$\sqrt{x}$-alnx,a∈R
(1)若a=2,求f(x)的最值;
(2)若f(x)存在最小值,求其最小值g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列{an}的前n项的和为Sn,对于任意的自然数an>0,4Sn=(an+1)2
(Ⅰ)求a1的值;
(Ⅱ)求证:数列{an}是等差数列,并求通项公式;
(Ⅲ)设bn=$\frac{{a}_{n}}{{3}^{n}}$,求和Tn=b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$a+\frac{1}{a}=7$,则${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$=(  )
A.3B.9C.-3D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数$f(x)=\left\{\begin{array}{l}{3^x},x≤0\\|{log_3}x|,x>0\end{array}\right.$,则f(f(-1))的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设命题p:x2+2x-3<0 q:-5≤x<1,则命题p成立是命题q成立的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\frac{1+cos2α}{sin2α}$=$\frac{1}{2}$,则$\frac{1}{sinαcosα}$等于(  )
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案