精英家教网 > 高中数学 > 题目详情
(2012•台州一模)若不等式x2+2xy≤a(6x2+y2)对任意正实数x,y恒成立,则实数a的最小值为(  )
分析:不等式x2+2xy≤a(6x2+y2),可化为a≥
x2+2xy
6x2+y2
=
1+2•
y
x
6+(
y
x
)2
对于一切正数x,y恒成立,换元,求出函数的最值,即可求得结论.
解答:解:不等式x2+2xy≤a(6x2+y2),可化为a≥
x2+2xy
6x2+y2
=
1+2•
y
x
6+(
y
x
)2

令t=
y
x
,则t>0,a≥
1+2t
6+t2

令f(t)=
1+2t
6+t2
,则f′(t)=
-2(t+3)(t-2)
(6+t2)2

∴t∈(0,2)时,f′(t)>0,函数单调递增,t∈(2,+∞)时,f′(t)<0,函数单调递减
∴t=2时,函数取得最大值
1
2

∴a≥
1
2

∴实数a的最小值为
1
2

故选D.
点评:本题考查恒成立问题,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•台州一模)若椭圆和双曲线具有相同的焦点F1,F2,离心率分别为e1,e2,P是两曲线的一个公共点,且满足PF1⊥PF2,则
1
e
2
1
+
1
e
2
2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州一模)设复数Z的共轭复数为
.
Z
,i为虚数单位.若Z=1+i,则(3+2
.
Z
)i=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州一模)已知|
OA
|=|
OB
|=2,点C在线段AB上,且|
OC
|的最小值为1,则|
OA
-t
OB
|(t∈R)的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州一模)tan330°=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州一模)若a,b为实数,则“a+b≤1”是“a≤
1
2
b≤
1
2
”的(  )

查看答案和解析>>

同步练习册答案