精英家教网 > 高中数学 > 题目详情
8.已知某三棱锥的三视图是如图所示的三个直角三角形,那么这个三棱锥最小的一个表面的面积是6.

分析 根据三视图还原成原图为四个面都是直角三角形的四面体,然后求出四个面的面积,找出最小面积

解答 解:由三视图可知,该几何体的四个面都是直角三角形的四面体(如图所示),
则SABD=$\frac{1}{2}$×4×5=10,SABC=$\frac{1}{2}$×3×5=7.5,SBCD=$\frac{1}{2}$×4×3=6,
且AD>51,AC>5,CD=5,
∴SACD>SBCD
∴面积最小为6.
故答案为:6.

点评 本题考查了由三视图还原成原图,要注意还原前后数量的对应关系,考查了空间想象能力,属于基本题型,难度不大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=mx2+2mx+1.
(1)当m=1时,求不等式f(x)>-x-2的解集.
(2)若f(x)>0对任意x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的四个点M(1,1)、$P({\frac{1}{2},\frac{1}{2}})$、Q(2,1)、$H({2,\frac{1}{2}})$中,“好点”的个数为(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线C1:y2=2px(p>0)的焦点为F,圆C2:x2+y2=4,若C1与C2交于A,B两点,且|AB|=2$\sqrt{3}$,则抛物线C1上的点P(m,3$\sqrt{3}$)到F的距离为(  )
A.$\frac{21}{2}$B.21C.$\frac{39}{2}$D.$\frac{39}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.经过(-1,2)且与直线x+y-1=0垂直的直线是(  )
A.x-y+1=0B.x-y+3=0C.x+y+1=0D.x+y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设P为直线l1:x-2y+4=0与直线l:2x-y-4=0的交点,圆C:x2+y2-4x-4y+7=0,l0为过点P且斜率为k的直线,
(1)若k=$\frac{3}{2}$,l0与圆C交于A,B两点,求|AB|;
(2)k为何值时,l0与圆C相切?设切点分别为M,N,求cos∠MPN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.福州为了迎接青运会,计划从2011年到2015年,每年年初投入资金用于更新和改进体育场所与设施,若2011年年初投入a万元,以后每年年初投入的资金比上一年递增10%,则投入的总资金约为(参考数据 1.14≈1.46,1.15≈1.61)(  )
A.4.6a万元B.6.1a万元C.14.6a万元D.16.1a万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.sin 20°cos10°+cos20°sin170°=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在多面体ABCDEF中,底面ABCD为菱形,∠BAD=60°,△ADE为等边三角形,且平面ADE⊥平面ABCD,EF $\stackrel{∥}{=}$$\frac{1}{2}$AB,点G为CD的中点.
(Ⅰ)证明:BD⊥EG;
(Ⅱ)求直线DE与平面BCF所成的角的正弦值.

查看答案和解析>>

同步练习册答案