【题目】我国南宋著名数学家秦九韶(约1202—1261)被国外科学史家赞誉为“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一”.他独立推出了“三斜求积”公式,求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”把以上这段文字写成从三条边长求三角形面积的公式,就是.现如图,已知平面四边形中,,,,,,则平面四边形的面积是_________.
科目:高中数学 来源: 题型:
【题目】已知为等腰直角三角形,,将沿底边上的高线折起到位置,使,如图所示,分别取的中点.
(1)求二面角的余弦值;
(2)判断在线段上是否存在一点,使平面?若存在,求出点的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家拟在新年举行大型的促销活动,经测算某产品当促销费用为万元时,销售量万件满足(其中,为正常数).现假定生产量与销售量相等,已知生产该产品万件还需投入成本万元(不含促销费用),产品的销售价格定为万元/万件.
(1)将该产品的利润万元表示为促销费用万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校将甲、乙等6名新招聘的老师分配到4个不同的年级,每个年级至少分配1名教师,且甲、乙两名老师必须分到同一个年级,则不同的分法种数为______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面ABCD,,AB∥DC,,,点E为棱PC中点。
(1)证明:平面PAD;
(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.
(1)选5人排成一排;
(2)排成前后两排,前排4人,后排3人;
(3)全体排成一排,甲不站排头也不站排尾;
(4)全体排成一排,女生必须站在一起;
(5)全体排成一排,男生互不相邻.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小组共7人,利用假期参加义工活动,已知参加义工活动的次数为1,2,3的人数分别为2,2,3.现从这7人中随机选出2人作为该组代表参加座谈会:
(Ⅰ)设A为事件“选出的2人参加义工活动的次数之和为4”,求事件A发生的概率;
(Ⅱ)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com