精英家教网 > 高中数学 > 题目详情
19.不等式-x2+4x+5<0的解集是(  )
A.{x|x>5或x<-1}B.{x|x≥5或x≤-1}C.{x|-1<x<5}D.{x|-1≤x≤5}

分析 利用一元二次不等式的解法即可求出.

解答 解:∵-x2+4x+5<0,
∴x2-4x-5>0,
∴(x-5)(x+1)>0,
∴x<-1,或x>5,
∴原不等式的解集为{x|x<-1或x>5}.
故选:A.

点评 熟练掌握一元二次不等式的解法是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.(1)已知:$tanα=-\frac{1}{3},计算:\frac{sinα+2cosα}{5cosα-sinα}$
(2)在锐角三角形ABC中$sinA=\frac{{2\sqrt{2}}}{3}$,求sin2(B+C)+cos(-23π+A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A是圆上一定点,在圆上其他位置上任取一点B,则AB的长度小于半径的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$y=4x-\sqrt{2x-1}$的值域为[$\frac{15}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出如下四个命题:
①若“p且q”为假命题,则p、q均为假命题;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≥1;
④在△ABC中,“A>B”是“sinA>sinB”的充要条件.
其中不正确的命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.边长为1的正方形ABCD,将△ABC沿对角线AC折起,使△ABD为正三角形,则直线BD和平面ABC所成的角的大小为(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=ax-4+1(a>0,且a≠1)的图象经过定点A,而点A在幂函数g(x)=xα的图象上,则α=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow a$=(0,2,1),$\overrightarrow b$=(1,-1,2 )的夹角为(  )
A.B.45°C.90°D.180°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}和{bn}满足:a1=1,-2an与an+1是方程x2-2nx-(n+1)bn=0的两个根.
(I)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案