精英家教网 > 高中数学 > 题目详情

【题目】已知点,直线为平面内的动点,过点作直线的垂线,垂足为点,且.

(1)求动点的轨迹的方程;

(2)过点作两条互相垂直的直线分别交轨迹四点.求的取值范围.

【答案】(1) (2)

【解析】

(1)设动点,则,由展开计算得到的关系式即可;(2)当直线的斜率不存在(或者为0)时,可求出四点坐标,即可得到;当直线的斜率存在且不为0时,设为,直线的方程为,与轨迹的方程联立,结合根与系数的关系可得到+的表达式,然后利用函数与导数知识可求出的取值范围。

(1)设动点,则

,则

所以

化简得.

故点的轨迹的方程为.

(2)当直线的斜率不存在时,轴,

可设

当直线的斜率为0时,轴,同理得

当直线的斜率存在且不为0时,设为,则直线的方程为:

,由得:

所以

直线的方程为:

同理可得:

所以

,则

,得,得

上单调递减,在上单调递增

,故.

综上所述,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数yf(x)满足:集合A={f(n)|n∈N*}中至少有三个不同的数成等差数列,则称函数f(x)是“等差源函数”,则下列四个函数中,“等差源函数”的个数是(  )

y=2x+1;②y=log2x;③y=2x+1;

y=sin

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为为参数),交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)设点;若成等比数列,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】11”促销活动中,某商场为了吸引顾客,搞好促销活动,采用双色球定折扣的方式促销,即:在红、黄的两个纸箱中分别装有大小完全相同的红、黄球各5个,每种颜色的5个球上标有123455个数字,顾客结账时,先分别从红、黄的两个纸箱中各取一球,按两个球的数字之和为折扣打折,如,就按3折付款,并规定取球后不再增加商品.按此规定,顾客享有6折及以下折扣的概率是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)令,求证:有唯一的极值点;

2)若点为函数上的任意一点,点为函数上的任意一点,求两点之间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的焦点,若点在抛物线上,且

求抛物线的方程;

动直线与抛物线相交于两点,问:在轴上是否存在定点其中,使得向量与向量共线其中为坐标原点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是圆的直径,在圆上且分别在的两侧,其中.现将其沿折起使得二面角为直二面角,则下列说法不正确的是(

A.在同一个球面上

B.时,三棱锥的体积为

C.是异面直线且不垂直

D.存在一个位置,使得平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案