精英家教网 > 高中数学 > 题目详情
11.下列结论正确的个数是(  )
①命题“所有的四边形都是矩形”是特称命题;
②命题“?x∈R,x2+2<0”是全称命题;
③若p:?x∈R,x2+4x+4≤0,则q:?x∈R,x2+4x+4≤0是全称命题.
A.0B.1C.2D.3

分析 利用全称命题与特称命题的定义判断即可.

解答 解:①命题“所有的四边形都是矩形”是全称命题,故①错误;
②命题“?x∈R,x2+2<0”是全称命题,故②正确;
③若p:?x∈R,x2+4x+4≤0,则q:?x∈R,x2+4x+4≤0是全称命题,故③正确.
故选:C.

点评 此题考查了全称命题与特称命题,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}的公差是1,且a1,a3,a7成等比数列,则a5=(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|-x2-x+6>0,x∈Z},B={1,2,3},则A∩B=(  )
A.{-2,-1,0,1}B.{1,2,3}C.{0,1}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知过双曲线Г:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2作圆x2+y2=a2的切线,交双曲线Г的左支交于点A,且AF1⊥AF2,则双曲线的渐近线方程是(  )
A.y=±2xB.y=±$\frac{1}{2}$xC.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\sqrt{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点P是椭圆Г:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的一点,F1、F2为椭圆的左、右焦点,若∠F1PF2=60°,且△PF1F2的面积为$\frac{\sqrt{3}}{4}$a2,则椭圆的离心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x≥$\frac{5}{2}$,求f(x)=$\frac{{x}^{2}-4x+5}{2x-4}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=x2+2x+alnx在(0,1)上单调递减,则实数a的取值范围是(  )
A.a≥0B.a≤0C.a≥-4D.a≤-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=xlnx的单调递减区间为(  )
A.(-∞,$\frac{1}{e}$)B.(0,$\frac{1}{e}$)C.(-∞,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,等边三角形PAB所在的平面与平行四边形ABCD所在的平面垂直,E是线段BC中点,∠ABC=60°,BC=2AB=2.
(Ⅰ)在线段PA上确定一点F,使得EF∥平面PCD,并说明理由;
(Ⅱ)求二面角P-CD-A的余弦值.

查看答案和解析>>

同步练习册答案