精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex+be﹣x﹣2asinx(a,b∈R).
(1)当a=0时,讨论函数f(x)的单调区间;
(2)当b=﹣1时,若f(x)>0对任意x∈(0,π)恒成立,求a的取值范围.

【答案】
(1)解:当a=0时,f(x)=ex+be﹣x,f′(x)=ex

当b≤0时,f′(x)>0恒成立,即此时函数f(x)的单调递增区间为(﹣∞,+∞);

当b>0时,令f′(x)=0,解得:x= lnb,

当x< lnb时f′(x)<0恒成立,x> lnb时f′(x)>0,

∴此时函数f(x)的单调递减区间为(﹣∞, lnb);函数f(x)的单调递增区间为( lnb,+∞)


(2)解:当b=﹣1时,函数f(x)=ex﹣e﹣x﹣2asinx,

又∵当x∈(0,π)时sinx>0,

∴f(x)>0对任意x∈(0,π)恒成立等价于a< 恒成立,

记g(x)= ,其中0<x<π,则g′(x)=

令h(x)=ex(sinx﹣cosx)+e﹣x(sinx+cosx),则h′(x)=2(ex﹣e﹣x)sinx>0,

∴h(x)在(0,π)上单调递增,h(x)>h(0)=0,

∴g′(x)>0恒成立,从而g(x)在(0,π)上单调递增,g(x)>g(0),

由洛必达法则可知,g(0)= = =1,

∴a≤1,即a的取值范围是(﹣∞,1]


【解析】(1)当a=0时求导可知f′(x)=ex ,分b≤0与b>0两种情况讨论即可;(2)通过分离参数可知条件等价于a< 恒成立,进而记g(x)= ,问题转化为求g(x)在(0,π)上的最小值问题,通过二次求导,结合洛必达法则计算可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法错误的是_____________.

①.如果命题“”与命题“”都是真命题,那么命题一定是真命题.

②.命题,则

③.命题“若,则”的否命题是:“若,则

④.特称命题 “,使”是真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在正数使得其中为自然对数的底数,则实数的取值范围是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知等差数列{an}的前n项和为Sn,且a3=5S15="225."

1)求数列{an}的通项an

2)设bn=+2n,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数在其定义域内存在,使得成立,则称函数为“可分拆函数”.

(1)试判断函数是否为“可分拆函数”?并说明你的理由;

(2)设函数为“可分拆函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个同学家开了一个奶茶店,他为了研究气温对热奶茶销售杯数的影响,从一季度中随机选取5天,统计出气温与热奶茶销售杯数,如表:

气温

0

4

12

19

27

热奶茶销售杯数

150

132

130

104

94

(Ⅰ)求热奶茶销售杯数关于气温的线性回归方程精确到0.1),若某天的气温为,预测这天热奶茶的销售杯数;

(Ⅱ)从表中的5天中任取两天,求所选取两天中至少有一天热奶茶销售杯数大于130的概率.

参考数据:.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P与两个定点O(0,0),A(-3,0)距离之比为.

(1)求点P的轨迹C方程;

(2)求过点M(2,3)且被轨迹C截得的线段长为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知sin(α+ )= ,α∈( ,π).求:
(1)cosα的值;
(2)sin(2α﹣ )的值.

查看答案和解析>>

同步练习册答案