精英家教网 > 高中数学 > 题目详情

【题目】点(x,y)满足 ,则 的取值范围为

【答案】[ ]
【解析】解:作出不等式组对应的平面区域如图:

则x>0,y>0, =
设k= ,则k>0,
= = =
则k的几何意义是区域内的点到原点的斜率,
由图象知OB的斜率最小,OA的斜率最大,
,即A(1,2),
,即B(2,1),
则OB的斜率k= ,OA的斜率k=2,
≤k≤2,
设f(k)=k+ ,则函数在 ≤k≤1上递减,在1≤k≤2上递增,
则最小值为f(1)=1+1=2,
f(2)=2+ = ,f( )=2+ = =f(2),
则2≤f(k)≤
则2≤k+

的取值范围为[ ],
所以答案是:[ ]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直角坐标系中,曲线轴负半轴交于点,直线相切于 上任意一点, 上的射影, 的中点.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)轨迹轴交于,点为曲线上的点,且 ,试探究三角形的面积是否为定值,若为定值,求出该值;若非定值,求其取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解不等式: ≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinx+cosx.
(1)求f(x)的最大值;
(2)设g(x)=f(x)cosx,x∈[0, ],求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点A(﹣2,0),B(0,2),点C是圆x2+y2﹣2x=0上的任意一点,则△ABC的面积最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙O:x2+y2=1和点M(4,2).
(Ⅰ)过点M向⊙O引切线l,求直线l的方程;
(Ⅱ)求以点M为圆心,且被直线y=2x﹣1截得的弦长为4的⊙M的方程;
(Ⅲ)设P为(Ⅱ)中⊙M上任一点,过点P向⊙O引切线,切点为Q.试探究:平面内是否存在一定点R,使得 为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱台的上、下底面的边长分别是3和6.
(1)若侧面与底面所成的角为60°,求此三棱台的体积;
(2)若侧棱与底面所成的角为60°,求此三棱台的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx)+b(A>0,ω>0)的最大值为2,最小值为0,其图象相邻两对称轴间的距离为2,则f(1)+f(2)+…+f(2008)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)在给定直角坐标系内直接画出f(x)的草图(不用列表描点),并由图象写出函数 f(x)的单调减区间;

(2)当m为何值时f(x)+m=0有三个不同的零点.

查看答案和解析>>

同步练习册答案