如图1,在直角梯形中,AD//BC,
=900,BA="BC"
把ΔBAC沿
折起到
的位置,使得点
在平面ADC上的正投影O恰好落在线段
上,如图2所示,点
分别为线段PC,CD的中点.
(I) 求证:平面OEF//平面APD;
(II)求直线CD与平面POF
(III)在棱PC上是否存在一点,使得
到点P,O,C,F四点的距离相等?请说明理由.
科目:高中数学 来源:2013-2014学年山西省高三上学期期中考试理科数学试卷(解析版) 题型:解答题
如图1,在直角梯形中,
,
,
,
. 把
沿对角线
折起到
的位置,如图2所示,使得点
在平面
上的正投影
恰好落在线段
上,连接
,点
分别为线段
的中点.
(1)求证:平面平面
;
(2)求直线与平面
所成角的正弦值;
(3)在棱上是否存在一点
,使得
到点
四点的距离相等?请说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年北京市海淀区高三5月期末练习(二模)理科数学试卷(解析版) 题型:解答题
如图1,在直角梯形中,
,
,
,
. 把
沿对角线
折起到
的位置,如图2所示,使得点
在平面
上的正投影
恰好落在线段
上,连接
,点
分别为线段
的中点.
(I)求证:平面平面
;
(II)求直线与平面
所成角的正弦值;
(III)在棱上是否存在一点
,使得
到点
四点的距离相等?请说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年山东省高三4月模拟理科数学试卷(解析版) 题型:解答题
如图1,
在直角梯形中,
,
,
,
为线段
的中点. 将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(1)求证:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源:2014届广东省汕头市高二下学期期中文科数学试卷(解析版) 题型:解答题
如图1,在直角梯形中,
,
,且
.
现以为一边向形外作正方形
,然后沿边
将正方形
翻折,使平面
与平面
垂直,
为
的中点,如图2.
(1)求证:∥平面
;
(2)求证:平面
;
(3)求点到平面
的距离.
图 图
查看答案和解析>>
科目:高中数学 来源:2010年天津市天津一中高三下学期第五次月考数学(理) 题型:解答题
如图1,在直角梯形中,
,
把△沿对角线
折起后如图2所示(点
记为点
), 点
在平面
上的正投影
落在线段
上, 连接
.
(1) 求直线与平面
所成的角的大小;
(2) 求二面角的大小的余弦值.
图1 图2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com