【题目】已知点是圆: 上任意一点,点与圆心关于原点对称.线段的中垂线与交于点.
(1)求动点的轨迹方程;
(2)设点,若直线轴且与曲线交于另一点,直线与直线交于点,证明:点恒在曲线上,并求面积的最大值.
【答案】(1).(2)见解析.
【解析】试题分析:⑴根据题目条件并结合椭圆定义,即可求得动点的轨迹方程;
⑵设点坐标为,则点的坐标为,进而表示出直线与直线
交于点的坐标,即可证明点恒在椭圆上,设直线: , , ,联立直线方程和椭圆方程,化为关于的一元二次方程,利用根与系数的关系得到,代入三角形的面积公式,可得,利用换元法,即可求得面积的最大值。
解析:(1)由题意得, 点坐标为,因为为中垂线上的点,所以,
又,所以,
由椭圆的定义知, , .
所以动点的轨迹方程: .
(2)证明:设点坐标为,则点的坐标为,且,
所以直线: ,即,
直线: ,即;
联立方程组,解得, ,则
.
所以点恒在椭圆上.
设直线: , , ,
则由,消去整理得,
所以, ,
所以
,
从而
,
令,则函数在上单调递增,
故,所以,
即当时, 面积取得最大值,且最大值为.
科目:高中数学 来源: 题型:
【题目】设m, n是两条不同的直线,是三个不同的平面, 给出下列四个命题:
①若m⊥α,n∥α,则m⊥n;; ②若α∥β, β∥r, m⊥α,则m⊥r;
③若m∥α,n∥α,则m∥n;; ④若α⊥r, β⊥r,则α∥β.
其中正确命题的序号是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“x∈R,ex>0”的否定是“x∈R,ex>0”
B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
D.命题“若a=﹣1,则函数f(x)=ax2+2x﹣1只有一个零点”的逆命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.
(1)若的坐标为,求的值;
(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知等边△ABC中,E,F分别为AB,AC边的中点,N为BC边上一点,且CN= BC,将△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M为EF中点.
(1)求证:平面A′MN⊥平面A′BF;
(2)求二面角E﹣A′F﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别如下图所示。
甲 | 0 | 1 | 0 | 2 | 2 | 0 | 3 | 1 | 2 | 4 |
乙 | 2 | 3 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 1 |
从数据上看, ________________机床的性能较好(填“甲”或者“乙”).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com