精英家教网 > 高中数学 > 题目详情
2.已知各项均为正数的数列{an}满足an+1=sinan(n∈N*),则下列的说法中,正确的是(  )
A.{an}是单调递减数列B.{an}是单调递增数列
C.{an}是周期数列D.{an}是常数数列

分析 先构造函数f(x)=x-sinx,x∈[0,+∞),根据函数性质得出结论:sinx≤x对任意x∈[0,+∞)恒成立,再判断该数列单调递减.

解答 解:先构造函数f(x)=x-sinx,x∈[0,+∞),
f'(x)=1-cosx≥0对任意x∈[0,+∞)恒成立,
所以,f(x)单调递增,且f(0)=0,
因此,当x≥0时,f(x)≥0,
所以,sinx≤x对任意x∈[0,+∞)恒成立,仅当x=0时,取“=”.
根据题意,数列{an}的各项均为正数,
所以,an+1=sinan<an
即an+1<an恒成立,所以数列{an}单调递减,
故答案为:A.

点评 本题主要考查了数列的单调性,以及导数在研究函数性质中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AD,AB的中点.
(1)求证:EF∥平面CB1D1
(2)求证:B1D1⊥平面CAA1C1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设数列的通项公式是an=$\frac{n-t(t-1)}{n-{t}^{2}}$,若a3最大,a4最小,则实数t的取值范围为(  )
A.($\sqrt{3}$,2)B.(1,2)C.(-2,-$\sqrt{3}$)∪($\sqrt{3}$,2)D.(-2,-$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=x-lnx.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)请画出函数f(x)的大致图象,并指出其单调区间和最值;
(3)求函数f(x)的区间[a,a+1](a>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一根长为lcm的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是s=3cos($\sqrt{\frac{g}{l}}t+\frac{π}{3}$),t∈[0,+∞)
(1)求小球摆动的周期;
(2)已知g≈980cm/s2,要使小球摆动的周期是1s,线的长度l应当是多少?(精确到0.1cm)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,tanA=$\frac{1}{3}$,B=$\frac{π}{4}$.若椭圆E以AB为长轴,且过点C,则椭圆E的离心率是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某同学利用计算机设计计算程序,使得输入数据和输出数据具有如下对应关系,那么输入数据为8时,输出的数据是$\frac{8}{23}$.
 输入 1
 输出 $\frac{1}{2}$ $\frac{2}{5}$ $\frac{3}{8}$ $\frac{4}{11}$ $\frac{5}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果角α的终边经过点P(sin780°,cos(-330°)),则sinα=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线l1与直线l2:4x-3y+1=0垂直且与圆C:x2+y2=-2y+3相切,则直线l1的方程是3x+4y+6=0或3x+4y-14=0.

查看答案和解析>>

同步练习册答案