精英家教网 > 高中数学 > 题目详情
3.已知命题p:在x∈[1,2]内,不等式x2+ax-2>0恒成立;命题q:函数f(x)=$lo{g}_{\frac{1}{2}}({x}^{2}-2ax+3a)$是区间[1,+∞)上的减函数,若命题“p∨q”是真命题,求实数a的取值范围.

分析 分别判断出p,q的真假,从而判断出 复合命题的真假,进而求出a的范围即可.

解答 解:关于命题p:在x∈[1,2]内,不等式x2+ax-2>0恒成立,
则$\left\{\begin{array}{l}{-\frac{a}{2}≤1}\\{f(1)=a-1>0}\end{array}\right.$,解得:a>1;
关于命题q:函数f(x)=$lo{g}_{\frac{1}{2}}({x}^{2}-2ax+3a)$是区间[1,+∞)上的减函数,
即y=x2-2ax+3a在x∈[1,+∞)单调递增且恒为正,
∴$\left\{\begin{array}{l}{a≤1}\\{1+a>0}\end{array}\right.$,解得:-1<a≤1,
若命题“p∨q”是真命题,
则p,q至少有一个是真命题,
∴a>-1.

点评 本题考查了复合命题的判断,考查二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=2x2-mx+3在(-∞,2)上的减函数,在(2,+∞)上是增函数,则m的值为(  )
A.-2B.-8C.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)满足f($\frac{x}{x+1}$)=2x+1,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,三棱柱CB=AC=CC1,CB⊥AC,E,F分别是A1B,B1C1的中点,AA1⊥底面ABC.
(1)求证:B1C⊥平面A1BC1
(2)求证:EF∥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)满足f(x)=$\left\{\begin{array}{l}{x-3,x≥1000}\\{f(x+5),x<1000}\end{array}\right.$,则f(84)的值是1001.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=a-bcos(2x+$\frac{π}{6}$)的最大值为3,最小值为-1.
(1)求a,b的值;
(2)设函数g(x)=4asin(bx-$\frac{π}{3}$),求方程g(x)-2=0在区间[$\frac{π}{6}$,$\frac{5}{6}$π]上所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}.
(1)若an=n2-5n+4.
①数列中有多少项是负数?
②n为何值时,an有最小值?并求出最小值.
(2)若an=n2+kn+4且对于n∈N*都有an+1>an,求数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax+a-x(a>0且a≠1).
(1)判断函数f(x)的奇偶性;
(2)设g(x)=$\frac{1}{f(x)}$,当x∈(0,1)时,求函数g(x)的值域;
(3)若f(1)=$\frac{5}{2}$,设h(x)=a2x+a-2x-2mf(x)的最小值为-7,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)的图象与g(x)=($\frac{1}{2}$)x的图象关于直线y=x对称,那么f(2x-x2)的值域是(  )
A.RB.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

同步练习册答案