精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱AD,DD1,D1A1,A1A的中点,M是AB的中点,点N在四边形EFGH的四边及其内部运动,则N满足条件
点N在线段EG上
点N在线段EG上
时,有MN⊥A1C1
分析:连接EG、EM、GM、BD,利用正方形AA1D1D对边中点连线,得到EG∥AA1,结合AA1⊥平面A1B1C1D1得到EG⊥平面A1B1C1D1,从而A1C1⊥EG.再利用△ABD中的中位线EM∥BD,结合B1D1∥BD,得到EM∥B1D1,再由A1C1⊥B1D1得到A1C1⊥EM,最后利用线面垂直的判定定理得到A1C1⊥平面EGM.因此,当点N在EG上时,直线MN?平面EGM,有MN⊥A1C1成立.
解答:解:(1)连接EG、EM、GM、BD
∵正方形AA1D1D中,E、G分别为AD、A1D1的中点
∴EG∥AA1
∵AA1⊥平面A1B1C1D1
∴EG⊥平面A1B1C1D1
∵A1C1?平面A1B1C1D1
∴A1C1⊥EG
∵在△ABD中,EM是中位线
∴EM∥BD
∵BB1∥DD1且BB1=DD1
∴四边形BB1D1D是平行四边形,B1D1∥BD
∴EM∥B1D1
∵正方形A1B1C1D1中,A1C1⊥B1D1
∴A1C1⊥EM
∵EM∩EG=E,EM、EG?平面EGM
∴A1C1⊥平面EGM
因此,当点N在EG上时,直线MN?平面EGM,有MN⊥A1C1成立.
故答案为:点N在线段EG上.
点评:本题以正方体中的直线与直线平行、直线与直线垂直为例,考查了空间的线面平行和线面垂直等位置关系的证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案