【题目】已知在长方体ABCD﹣A1B1C1D1中,E、M、N分别是BC、AE、D1C的中点,AD=AA1 , AB=2AD
(Ⅰ)证明:MN∥平面ADD1A1
(Ⅱ)求直线AD与平面DMN所成角的余弦值.
【答案】解:(Ⅰ)如图,建立空间直角坐标系,设AD=1,则AB=2.∵DC⊥平面ADD1A1 , ∴ =(0,2,0),就是平面ADD1A1的一个法向量.
,∴ ,∴ =0,
∴ ,∴ .
(Ⅱ)设平面DMN的一个法向量为 .
∴ ,∴ .
取 = .
∴sinθ= = .
所以直线DA与平面ADD1A1 , 所成角的正弦位值是 .
【解析】(1)如图,建立空间直角坐标系,设AD=1,则AB=2.由DC⊥平面ADD1A1 , 可得 是平面ADD1A1的一个法向量.证明 =0,即可证明 .(2)设平面DMN的一个法向量为 =(x,y,z).利用 ,可得 .利用sinθ= 即可得出.
【考点精析】关于本题考查的直线与平面平行的判定和空间角的异面直线所成的角,需要了解平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=x2+bx+4
(1)若f(x)为偶函数,求b的值;
(2)若f(x)有零点,求b的取值范围;
(3)求f(x)在区间[﹣1,1]上的最大值g(b).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , , , , 分别为的中点, 为底面的重心.
(Ⅰ)求证: ∥平面;
(Ⅱ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若1和8的原象分别是3和10,则5在f下的象是( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于下列命题,正确的个数是( )
①若点(2,1)在圆x2+y2+kx+2y+k2﹣15=0外,则k>2或k<﹣4
②已知圆M:(x+cosθ)2+(y﹣sinθ)2=1,直线y=kx,则直线与圆恒相切
③已知点P是直线2x+y+4=0上一动点,PA、PB是圆C:x2+y2﹣2y=0的两条切线,A、B是切点,则四边形PACB的最小面积是为2
④设直线系M:xcosθ+ysinθ=2+2cosθ,M中的直线所能围成的正三角形面积都等于12 .
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合U={x|x是小于6的正整数},A={1,2},B∩(C∪A)={4},则∪(A∪B)=( )
A.{3,5}
B.{3,4}
C.{2,3}
D.{2,4}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com