ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×óÓÒÁ½½¹µã·Ö±ðΪF1£¬F2£¬pÊÇÍÖÔ²ÉÏÒ»µã£¬ÇÒÔÚxÖáÉÏ·½£¬PF2¡ÍF1F2£¬PF2=¦ËPF1£¬¦Ë¡Ê[
1
3
£¬
1
2
]£®
£¨1£©ÇóÍÖÔ²µÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£»
£¨2£©µ±eÈ¡×î´óֵʱ£¬¹ýF1£¬F2£¬PµÄÔ²QµÄ½ØyÖáµÄÏ߶γ¤Îª6£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ýÍÖÔ²ÓÒ×¼ÏßlÉÏÈÎÒ»µãAÒýÔ²QµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪM£¬N£®ÊÔ̽¾¿Ö±ÏßMNÊÇ·ñ¹ý¶¨µã£¿Èô¹ý¶¨µã£¬ÇëÇó³ö¸Ã¶¨µã£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©¦Ë=
|PF2|
|PF1|
=
b2
a
2a-
b2
a
£¬»¯Îª2a2¦Ë-b2¦Ë=b2£¬ÕûÀíΪ
b2
a2
=
2¦Ë
1+¦Ë
£®
¡àe2=
c2
a2
=1-
b2
a2
=1-
2¦Ë
1+¦Ë
=
1-¦Ë
1+¦Ë
£¬
¡àe=
1-¦Ë
1+¦Ë
£¬ÔڦˡÊ[
1
3
£¬
1
2
]
Éϵ¥µ÷µÝ¼õ£®
¡à¦Ë=
1
2
ʱ£¬e2×îС
1
3
£¬¦Ë=
1
3
ʱ£¬e2×îС
1
2
£¬¡à
1
3
¡Üe2¡Ü
1
2
£¬
¡à
3
3
¡Üe¡Ü
2
2
£®
£¨2£©µ±e=
2
2
ʱ£¬
c
a
=
2
2
£¬¡àc=b=
2
2
a
£¬
¡à2b2=a2£®
¡ßPF2¡ÍF1F2£¬¡àPF1ÊÇÔ²µÄÖ±¾¶£¬Ô²ÐÄÊÇPF1µÄÖе㣬¡àÔÚyÖáÉϽصõÄÏÒ³¤¾ÍÊÇÖ±¾¶£¬
¡àPF1=6£®
ÓÖ|PF1|=2a-
b2
a
=2a-
a2
a
=
3
2
a
=6£¬
¡àa=4£¬c=b=2
2
£®
¡àÍÖÔ²·½³ÌÊÇ
x2
16
+
y2
8
=1
£®
£¨3£©ÓÉ£¨2£©µÃµ½|PF2|=
b2
a
=
a
2
=2£¬ÓÚÊÇÔ²ÐÄQ£¨0£¬1£©£¬°ë¾¶Îª3£¬Ô²QµÄ·½³ÌÊÇx2+£¨y-1£©2=9£®ÍÖÔ²µÄÓÒ×¼Ïß·½³ÌΪx=4
2
£¬
¡ßÖ±ÏßAM£¬ANÊÇÔ²QµÄÁ½ÌõÇÐÏߣ¬¡àÇеãM£¬NÔÚÒÔAQΪֱ¾¶µÄÔ²ÉÏ£®
ÉèAµã×ø±êΪ(4
2
£¬t)
£¬¡à¸ÃÔ²·½³ÌΪx(x-4
2
)+(y-1)(y-t)=0
£®
¡àÖ±ÏßMNÊÇÁ½Ô²µÄ¹«¹²ÏÒ£¬Á½Ô²·½³ÌÏà¼õµÃ£º4
2
x+(t-1)y-8-t=0
£¬Õâ¾ÍÊÇÖ±ÏßMNµÄ·½³Ì£®
¸ÃÖ±Ïß»¯Îª£º(y-1)t+4
2
x-y-8=0
£¬
¡à
y-1=0
4
2
x-y-8=0
£¬½âµÃ
x=
9
2
8
y=1

¡àÖ±ÏßMN±Ø¹ý¶¨µã(
9
2
8
£¬1)
£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÉèA£¬B¡ÊR£¬A¡ÙBÇÒAB¡Ù0£¬Ôò·½³ÌBx-y+A=0ºÍ
x2
B
-
y2
A
=1
ÔÚͬһ×ø±êϵϵÄͼÏó¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

ÒÑÖªF1£¬F2ÊÇÍÖÔ²
x2
16
+
y2
9
=1
µÄÁ½½¹µã£¬¹ýµãF2µÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬ÔÚ¡÷AF1BÖУ¬ÈôÓÐÁ½±ßÖ®ºÍÊÇ10£¬ÔòµÚÈý±ßµÄ³¤¶ÈΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑ֪˫ÇúÏߵķ½³ÌΪ5x2-4y2=20Á½¸ö½¹µãΪF1£¬F2£®
£¨1£©Çó´ËË«ÇúÏߵĽ¹µã×ø±êºÍ½¥½üÏß·½³Ì£»
£¨2£©ÈôÍÖÔ²Óë´ËË«ÇúÏßÓй²Í¬µÄ½¹µã£¬ÇÒÓÐÒ»¹«¹²µãPÂú×ã|PF1|•|PF2|=6£¬ÇóÍÖÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬Ö±Ïßl£ºy=x+bÓëÅ×ÎïÏßx2=4yÏàÇÐÓÚµãA£®
£¨1£©ÇóʵÊýbµÄÖµ£»
£¨2£©Èô¹ýÅ×ÎïÏߵĽ¹µãÇÒƽÐÐÓÚÖ±ÏßlµÄÖ±Ïßl1½»Å×ÎïÏßÓÚB£¬CÁ½µã£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

´ÓÔ²O£ºx2+y2=4ÉÏÈÎÒâÒ»µãPÏòxÖá×÷´¹Ïߣ¬´¹×ãΪP¡ä£¬µãMÊÇÏ߶ÎPP¡äµÄÖе㣬ÔòµãMµÄ¹ì¼£·½³ÌÊÇ£¨¡¡¡¡£©
A£®
9x2
16
+
y2
4
=1
B£®
9y2
16
+
x2
4
=1
C£®x2+
y2
4
=1
D£®
x2
4
+y2=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ¶¥µãΪA1£¬A2£¬B1£¬B2£¬½¹µãΪF1£¬F2£¬|A1B2|=
7
£¬S?A1B1A2B2=2S?B1F1B2F2
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßm¹ýQ£¨1£¬1£©£¬ÇÒÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±QÊÇMNµÄÖеãʱ£¬ÇóÖ±ÏßmµÄ·½³Ì£®
£¨¢ó£©ÉènΪ¹ýÔ­µãµÄÖ±Ïߣ¬lÊÇÓën´¹Ö±ÏཻÓÚPµãÇÒÓëÍÖÔ²ÏཻÓÚÁ½µãA£¬BµÄÖ±Ïߣ¬|
OP
|=1
£¬ÊÇ·ñ´æÔÚÉÏÊöÖ±ÏßlʹÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=
6
3
£¬¹ýµãA£¨0£¬-b£©ºÍB£¨a£¬0£©µÄÖ±ÏßÓëÔ­µãµÄ¾àÀëΪ
3
2
£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£®
£¨2£©ÒÑÖª¶¨µãE£¨-1£¬0£©£¬ÈôÖ±Ïßy=kx+2£¨k¡Ù0£©ÓëÍÖÔ²½»ÓÚC¡¢DÁ½µã£®ÎÊ£ºÊÇ·ñ´æÔÚkµÄÖµ£¬Ê¹ÒÔCDΪֱ¾¶µÄÔ²¹ýEµã£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ijԲ׶ÇúÏßÓÐÏÂÁÐÐÅÏ¢£º
¢ÙÇúÏßÊÇÖá¶Ô³ÆͼÐΣ¬ÇÒÁ½×ø±êÖᶼÊǶԳÆÖ᣻
¢Ú½¹µãÔÚxÖáÉÏÇÒ½¹µãµ½×ø±êÔ­µãµÄ¾àÀëΪ1£»
¢ÛÇúÏßÓë×ø±êÖáµÄ½»µã²»ÊÇÁ½¸ö£»
¢ÜÇúÏß¹ýµãA£¨1£¬
3
2
£©£®
£¨1£©ÅжϸÃԲ׶ÇúÏßµÄÀàÐͲ¢ÇóÇúÏߵķ½³Ì£»
£¨2£©µãFÊǸÄԲ׶ÇúÏߵĽ¹µã£¬µãF¡äÊÇF¹ØÓÚ×ø±êÔ­µãOµÄ¶Ô³Æµã£¬µãPΪÇúÏßÉϵĶ¯µã£¬Ì½ÇóÒÔ|PF|ÒÔ¼°|PF|•|PF¡ä|µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸