【题目】已知函数g(x)=x2﹣(2a+1)x+alnx (Ⅰ) 当a=1时,求函数g(x)的单调增区间;
(Ⅱ) 求函数g(x)在区间[1,e]上的最小值;
(Ⅲ) 在(Ⅰ)的条件下,设f(x)=g(x)+4x﹣x2﹣2lnx,
证明: > (n≥2).(参考数据:ln2≈0.6931)
【答案】解:(Ⅰ)当a=1时,g(x)=x2﹣3x+lnx, ∴ ,
解得x>1或x< .
∴函数f(x)的单调增区间为(0, ),(1,+∞).
(Ⅱ)解:g(x)=x2﹣(2a+1)x+alnx,
=
= =0,
当a≤1,x∈[1,e],g′(x)>0,g(x)单调增.g(x)min=﹣2a,
当1<a<e,x∈(1,a),g′(x)<0,g(x)单调减.
x∈(a,e),g′(x)>0,g(x)单调增.
g(x)min=g(a)=﹣a2﹣a+alna,
当a≥e,x∈[1,e],g′(x)≤0,g(x)单调减,
g(x)min=e2﹣(2a+1)e+a.
∴g(x)min= .
(Ⅲ)证明:令h(x)=lnx﹣ ,
∵x∈[2,+∞), ,
∴ ,即lnx< ,
∴ =2( ),
k﹣f(k)=lnk,
= =
>2(1﹣ + ﹣ +…+ )
>2(1+ )
= ,(n≥2).
∴ > (n≥2)
【解析】(Ⅰ)由 ,能求出函数f(x)的单调增区间.(Ⅱ) = =0,由此根据a的取值范围分类讨论,能求出g(x)min . (Ⅲ)证明:令h(x)=lnx﹣ ,由x∈[2,+∞),得 ,从而得到 >2( ),k﹣f(k)=lnk,由此能证明 > (n≥2).
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握函数的最大(小)值与导数(求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】观察以下三个等式: sin215°﹣sin245°+sin15°cos45°=﹣ ,
sin220°﹣sin250°+sin20°cos50°=﹣ ,
sin230°﹣sin260°+sin30°cos60°=﹣ ;
猜想出一个反映一般规律的等式: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对正整数n,设曲线y=xn(1﹣x)在x=2处的切线与y轴交点的纵坐标为an , 则数列 的前n项和的公式是( )
A.2n
B.2n﹣2
C.2n+1
D.2n+1﹣2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)对任意的x∈(﹣ , )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是( )
A. f(﹣ )<f(﹣ )
B. f( )<f( )??
C.f(0)>2f( )
D.f(0)> f( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量m=(3sinx,cosx),n=(-cosx, cosx),f(x)=m·n-.
(1)求函数f(x)的最大值及取得最大值时x的值;
(2)若方程f(x)=a在区间上有两个不同的实数根,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=x3+ax2+bx+1的导函数f′(x)满足f′(x)=2a,f′(2)=﹣b,
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x)ex , 求函数g(x)的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com