【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格.某校有800 名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图所示.
(Ⅰ)求初赛分数在区间内的频率;
(Ⅱ)求获得复赛资格的人数;
(Ⅲ)据此直方图估算学生初赛成绩的平均数.
科目:高中数学 来源: 题型:
【题目】某果农选取一片山地种植红柚,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的倍.
(1)求、的值;
(2)求样本的平均数;
(3)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为(, 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.
(1)当时,求曲线上的点到直线的距离的最大值;
(2)若曲线上的所有点都在直线的下方,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数.
(1)求a的值,并证明是R上的增函数;
(2)若关于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数的最小正周期是;
②终边在y轴上的角的集合是;
③在同一坐标系中,函数的图象和函数的图象有一个公共点;
④把函数;
⑤在中,若,则是等腰三角形;
其中真命题的序号是( )
A.(1)(2)(3) B.(2)(3)(4)
C.(3)(4)(5) D.(1)(4)(5)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆()的左顶点,左焦点是线段的中点,抛物线的准线恰好过点.
(1)求椭圆的方程;
(2)如图所示,过点作斜率为的直线交椭圆于点,交轴于点,若为线段的中点,过作与直线垂直的直线,证明对于任意的(),直线过定点,并求出此定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中, , ,以为直径的圆记为圆,圆过原点的切线记为,若以原点为极点, 轴正半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)若过点,且与直线垂直的直线与圆交于, 两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取人对共享产品对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:
(Ⅰ)根据表中的数据,能否在犯错的概率不超过的前提下,认为对共享产品的态度与性别有关系?
(Ⅱ)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取人,再从人中随机抽取人赠送超市购物券作为答谢,求恰有人是女性的概率.
参考公式: .
临界值表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是定义在上的奇函数,对,均有,已知当时, ,则下列结论正确的是( )
A. 的图象关于对称 B. 有最大值1
C. 在上有5个零点 D. 当时,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com