精英家教网 > 高中数学 > 题目详情
已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根x=
1
2
,则f(x)=0在区间[0,2011]内根的个数为(  )
分析:由条件推出f(1-x)=f(1+x),进而推出f(x)为偶函数,且f(x)是周期等于2的周期函数,根据f(
1
2
)=0求出f(
3
2
)=0,从而得到函数f(x)在一个周期[0,2]上有2个零点,且函数f(x)在每两个整数之间都有一个零点,从而得到f(x)=0在区间[0,2011]内根的个数.
解答:解:∵f(x)=f(-x+2),∴f(x)的图象关于直线x=1对称,即f(1-x)=f(1+x).
又f(x+1)=f(x-1),∴f(x-1)=f(1-x),即f(x)=f(-x),故函数f(x)为偶函数.
再由f(x+1)=f(x-1)可得f(x+2)=f(x),故函数f(x)是周期等于2的周期函数.
由于f(
1
2
)=0,∴f(-
1
2
)=0,∴f(
3
2
)=f(2-
3
2
)=f(
1
2
)=0,
故函数f(x)在一个周期[0,2]上有2个零点,且函数f(x)在每两个整数之间都有一个零点,
f(x)=0在区间[0,2011]内根的个数为2011,
故选B.
点评:本题主要考查方程的根的存在性及个数判断,函数的奇偶性与周期性的应用,抽象函数的应用,体现了化归与转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2-2ax+5(a>1)
(Ⅰ)若f(x)的定义域和值域均为[1,a],求a的值;
(Ⅱ)若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,?x∈R都有f(x+6)=f(x)+2f(3),若函数f(x+1)的图象关于直线x+1=0对称,且f(-2)=2012,则f(2012)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知f(x)=log
1
2
x
,当点M(x,y)在y=f(x)的图象上运动时,点N(x-2,ny)在函数y=gn(x)的图象上运动(n∈N*).
(1)求y=gn(x)的表达式;
(2)若方程g1(x)=g2(x-2+a)有实根,求实数a的取值范围;
(3)设Hn(x)=2gn(x),函数F(x)=H1(x)+g1(x)(0<a≤x≤b)的值域为[log2
52
b+2
,log2
42
a+2
]
,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案