精英家教网 > 高中数学 > 题目详情

【题目】在某海礁A处有一风暴中心,距离风暴中心A正东方向200km的B处有一艘轮船,正以北偏西a(a为锐角)角方向航行,速度为40km/h.已知距离风暴中心180km以内的水域受其影响.

(1)若轮船不被风暴影响,求角α的正切值的最大值?

(2)若轮船航行方向为北偏西45°,求轮船被风暴影响持续多少时间?

【答案】(1)(2)

【解析】

(1)根据题意画出图形,结合图形建立平面直角坐标系,利用直线与圆的方程求出直线与圆相切时的斜率,即可求出角α正切值的最大值;(2)求出直线被圆所截的弦长,再计算轮船被风暴影响持续的时间.

(1)根据题意画出图形,如图所示,

则圆的方程为

设过点的直线方程为

则圆心到直线的距离为

化简得

解得

若轮船不被风暴影响,则角a的正切值的最大值为

(2)若轮船航行方向为北偏西,则直线方程为

则圆心到该直线的距离为

弦长为

则轮船被风暴影响持续的时间为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点AB.

)求椭圆M的方程;

)若,求 的最大值;

)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.C,D和点 共线,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知等边△ABC中,E,F分别为AB,AC边的中点,N为BC边上一点,且CN= BC,将△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M为EF中点.

(1)求证:平面A′MN⊥平面A′BF;
(2)求二面角E﹣A′F﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,圆.

(1)当直线与圆相切时,求直线的一般方程;

(2)若直线与圆相交,且弦长为,求直线的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为棱AB,BC的中点,点F在侧棱B1B上,且B1E⊥C1F,A1C1⊥B1C1

(1)求证:DE∥平面A1C1F;

(2)求证:B1E⊥平面A1C1F

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域上既是偶函数又在(0,+∞)上单调递减的是(
A.y=x2
B.y=x+1
C.y=﹣lg|x|
D.y=﹣2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题方程有两个不等的实根;命题方程无实根,若“”为真,“”为假,则实数的取值范围为___________.(写成区间的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点在抛物线上,过点垂直于轴,垂足为,设.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)若点上的动点,过点作抛物线的两条切线,切点分别为,设点到直线的距离为,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 C: 的焦距为2,且过点,右焦点为.设A,B 是C上的两个动点,线段 AB 的中点M 的横坐标为,线段AB的中垂线交椭圆C于P,Q 两点.

(1)求椭圆 C 的方程;

(2)设M点纵坐标为m,求直线PQ的方程,并求的取值范围.

查看答案和解析>>

同步练习册答案