精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论的单调性;

2)若函数上有且只有一个零点,求实数的取值范围.

【答案】1)答案不唯一,具体见解析(2

【解析】

(1) 求导函数,对其进行因式分解,分成,,,几类进行讨论,从而可确定函数的单调性与单调区间;

(2) 分成,,,,几类,利用函数的单调性和零点存在性定理,上有且只有一个零点,求解参数范围.

解:(1)定义域为

(Ⅰ)当时,

上单调递减,上单调递增;

(Ⅱ)当时,由,得

i)若,则,所以上单调递增;

ii)若,则

上单调递增,上单调递减,

iii)若,则

上单调递增,上单调递减.

2)(Ⅰ)当时,上单调递减,上单调递增;

时,,所以上有两个零点;

(Ⅱ)当时,,令,又知当,当时,,此时上有且只有一个零点;

(Ⅲ)当,

i)当时,由(1)知上单调递增,

此时上有且只有一个零点;

ii)当时,由(1)结合的单调性,只需讨论的符号,

时,上有且只有一个零点;

时,上无零点;

iii)若由(1)结合的单调性,,此时上有且只有一个零点.

综上所述,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面 分别为棱的中点.

(1)求证: 平面

2)(文科)求三棱锥的体积;

(理科)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E经过点,且离心率.

1)求椭圆E的方程;

2)设椭圆E的右顶点为A,若直线与椭圆E相交于MN两点(异于A点),且满足,试证明直线l经过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法自古以来就使用的纪年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸为十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为十二地支.“干支纪年法”是以一个天干和一个地支按上述顺序相配排列起来,天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此类推,则2080年是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在它们的交点处具有相同的切线.

1)求的解析式;

2)若函数有两个极值点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上,焦点为,圆O的直径为

1)求椭圆C及圆O的标准方程;

2)设直线l与圆O相切于第一象限内的点P,且直线l与椭圆C交于两点.记 的面积为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且,抛物线的通径与椭圆的右通径在同一直线上.

1)求椭圆与抛物线的标准方程;

2)过抛物线焦点且倾斜角为的直线与椭圆交于两点,为椭圆的左焦点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村户贫困户.为了做到精准帮扶,工作组对这户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标.将指标按照分成五组,得到如图所示的频率分布直方图.规定若,则认定该户为绝对贫困户,否则认定该户为相对贫困户;当时,认定该户为亟待帮住户”.工作组又对这户家庭的受教育水平进行评测,家庭受教育水平记为良好不好两种.

1)完成下面的列联表,并判断是否有的把握认为绝对贫困户数与受教育水平不好有关:

受教育水平良好

受教育水平不好

总计

绝对贫困户

相对贫困户

总计

2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于的贫困户中,随机选取两户,用表示所选两户中亟待帮助户的户数,求的分布列和数学期望.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

年龄

支持“延迟退休”的人数

15

5

15

28

17

(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

45岁以下

45岁以上

总计

支持

不支持

总计

(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人

①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.

②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

查看答案和解析>>

同步练习册答案