精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
如图,四棱锥中,为矩形,平面平面.
求证:

为何值时,四棱锥的体积最大?并求此时平面与平面夹角的余弦值.

(1)详见解析,(2)时,四棱锥的体积P-ABCD最大. 平面BPC与平面DPC夹角的余弦值为

解析试题分析:(1)先将面面垂直转化为线面垂直:ABCD为矩形,故ABAD,又平面PAD平面ABCD,平面PAD平面ABCD=AD,所以AB平面PAD,再根据线面垂直证线线垂直:因为PD平面PAD,所以ABPD
(2)求四棱锥体积,关键要作出高.这可利用面面垂直性质定理:过P作AD的垂线,垂足为O,又平面PAD平面ABCD,平面PAD平面ABCD=AD,所以PO平面ABCD,下面用表示高及底面积:设,则,故四棱锥P-ABCD的体积为
故当时,即时,四棱锥的体积P-ABCD最大.
求二面角的余弦值,可利用空间向量求解,根据题意可建立空间坐标系,分别求出平面BPC的法向量及
平面DPC的法向量,再利用向量数量积求夹角余弦值即可.
试题解析:(1)证明:ABCD为矩形,故ABAD,
又平面PAD平面ABCD
平面PAD平面ABCD=AD
所以AB平面PAD,因为PD平面PAD,故ABPD
(2)解:过P作AD的垂线,垂足为O,过O作BC的垂线,垂足为G,连接PG.
故PO平面ABCD,BC平面POG,BCPG
在直角三角形BPC中,
,则,故四棱锥P-ABCD的体积为

因为
故当时,即时,四棱锥的体积P-ABCD最大.

建立如图所示的空间直角坐标系,

设平面BPC的法向量,则由,
解得
同理可求出平面DPC的法向量,从而平面BPC与平面DPC夹角的余弦值为

考点:面面垂直性质定理,四棱锥体积,利用空间向量求二面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中-A BC中,AB  AC, AB=AC=2,=4,点D是BC的中点.
(1)求异面直线所成角的余弦值;
(2)求平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,点分别是棱的中点. 
(1)求证://平面
(2)若平面平面,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.
(1)证明:AC1⊥A1B;
(2)设直线AA1与平面BCC1B1的距离为,求二面角A1-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆柱的母线,是底面圆的直径,分别是的中点,
(1)证明:
(2)证明:
(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥 内会有被捕的危险,求鱼被捕的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(1)证明:AP⊥BC;
(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

直线与平面相交,直线是平面内的一条动直线,两条直线所成的角的范围是,则直线与平面所成的角度数为           

查看答案和解析>>

同步练习册答案