精英家教网 > 高中数学 > 题目详情
14.若集合A={x|x=in,n∈N+}(i是虚数单位),B={1,-1},则A∩B等于(  )
A.{-1}B.{1}C.D.{1,-1}

分析 求出集合A,然后求解交集即可.

解答 解:集合A={x|x=in,n∈N+}(i是虚数单位),
可得A={i,-1,-i,1}.
B={1,-1},
A∩B={1,-1}.
故选:D.

点评 本题考查复数的单位的幂运算,集合的交集的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.三角形ABC中,A、B、C所对的边分别为a,b,c;若A=$\frac{π}{3}$,则$a(cosC+\sqrt{3}sinC)$=(  )
A.a+bB.a+cC.b+cD.a+b+c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知f(x)=$lo{g}_{2}\frac{1-x}{1+x}$.
(1)解不等式0≤f(x)≤1;
(2)是否存在m∈R使关于x的方程f(2x)=-x+log2m有实根?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知tanx=$\sqrt{3}$,求x的取值集合;
(2)在单位圆中画出满足sinα=$\frac{1}{2}$的角α的终边,并作出其正弦线、余弦线和正切线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,其中mn>0,则$\frac{1}{m}+\frac{3}{n}$的最小
值为(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}的首项al=1,且对任意n∈N*,an与an+1恰为方程x2-bnx+2n=0的两个根.
(1)求数列(an}和数列{bn}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知实数数列{an}满足:an+2=|an+1|-an(n=1,2,…),a1=a,a2=b,记集合M={an|n∈N*}.
(Ⅰ)若a=1,b=2,用列举法写出集合M;
(Ⅱ)若a<0,b<0,判断数列{an}是否为周期数列,并说明理由;
(Ⅲ)若a≥0,b≥0,且a+b≠0,求集合M的元素个数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax3-$\frac{b}{x}$+c(a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是(  )
A.-2和2B.-3和5C.6和2D.3和4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在四边形ABCD中,∠D=2∠B,且AD=2,CD=9,cosB=$\frac{1}{3}$.
(1)求△ACD的面积;
(2)若sin∠BAC=$\frac{2}{3}$sinB,求AB的长.

查看答案和解析>>

同步练习册答案