精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2﹣ax﹣1(a∈R).
(1)若对任意实数x,f(x)<0恒成立,求实数a的取值范围;
(2)当a>0时,解关于x的不等式f(x)<2x﹣3.

【答案】
(1)解:对任意实数x,f(x)<0恒成立,

即有a=0时,﹣1<0恒成立;

a<0时,判别式小于0,即为a2+4a<0,解得﹣4《啊《0;

a>0时,不等式不恒成立.

综上可得,a的范围是(﹣4,0]


(2)解:由题意可得ax2﹣(2+a)x+2<0,

可化为(x﹣1)(ax﹣2)<0,a>0,

10当0<a<2时,∴ >1,其解集为(1, );

20当a=2时,即 =1,其解集为

30当a>2,即 <1,其解集为( ,1)


【解析】(1)对a讨论,分a=0,a<0,判别式小于0;a>0,解不等式,求交集即可得到所求范围;(2)先将不等式ax2﹣(a+2)x+2<0化为(x﹣1)(ax﹣2)<0,再对参数a的取值范围进行讨论,分类解不等式.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点F及点A(0,b),原点O到直线FA的距离为
(1)求椭圆C的离心率e;
(2)若点F关于直线l:2x+y=0的对称点P在圆O:x2+y2=4上,求椭圆C的方程及点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?(
A.9日
B.8日
C.16日
D.12日

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=ax上一点M(4,b)到焦点的距离为6.
(1)求抛物线的方程;
(2)若此抛物线与直线y=kx﹣2交于不同的两点A、B,且AB中点的横坐标为2,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=DC=2,点E为PC的中点,EF⊥PB,垂足为F点.

(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)求异面直线BE与PA所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点
(1)求证:DE∥平面ABC;
(2)求三棱锥E﹣BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 (a>0,b>0)的两条渐近线与抛物线D:y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,双曲线的离心率为 ,△ABO的面积为2
(1)求双曲线C的渐近线方程;
(2)求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点坐标分别为A(﹣1,1),B(7,﹣1),C(﹣2,5),AB边上的中线所在直线为l.
(1)求直线l的方程;
(2)若点A关于直线l的对称点为D,求△BCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2﹣2x+4y﹣20=0截直线5x﹣12y+c=0的弦长为8,
(1)求c的值;
(2)求直线y=x﹣11上的点到圆上点的最短距离.

查看答案和解析>>

同步练习册答案